World J Microbiol Biotechnol
January 2017
This study evaluated the capacity to remove lead by an indigenous consortium of five sulfate-reducing bacteria (SRB): Desulfobacterium autotrophicum, Desulfomicrobium salsugmis, Desulfomicrobium escambiense, Desulfovibrio vulgaris, and Desulfovibrio carbinolicus, using continuous moving bed biofilm reactor systems. Four continuous moving bed biofilm reactors (referred as R1-R4) were run in parallel for 40 days at lead loading rates of 0, 20, 30 and 40 mg l day, respectively. The impact of lead on community structure of the SRB consortium was investigated by dsrB gene-based denaturing gradient gel electrophoresis (dsrB-based DGGE), fluorescence in situ hybridization (FISH) and chemical analysis.
View Article and Find Full Text PDFThe effect of heavy metals on community structure of a heavy metal tolerant sulfidogenic consortium was evaluated by using a combination of denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene and dissimilatory sulfite reductase (dsrB) gene fragments, 16S rRNA gene cloning analysis and fluorescence in situ hybridization (FISH). For this purpose, four anaerobic semi-continuous stirred tank reactors (referred as R1-R4) were run in parallel for 12 weeks at heavy metal loading rates of 1.5, 3, 4.
View Article and Find Full Text PDFRemoval of heavy metals by an enriched consortium of sulfate-reducing bacteria (SRB) was evaluated through the abundance of SRB, sulfate reduction, sulfide production and heavy metal precipitation. Five parallel anaerobic semi-continuous stirred tank reactors (CSTR, V = 2 L) (referred as R1-R5) were fed with synthetic wastewater containing mixtures of Cu(2+), Zn(2+), Ni(2+), and Cr(6+) in the concentrations of 30, 60, 90, 120, and 150 mg L(-1) of each metal and operated with a hydraulic retention time of 20 days for 12 weeks. The loading rates of each metal in R1-R5 were 1.
View Article and Find Full Text PDF