Surface-enhanced Raman scattering (SERS), a powerful technique for trace molecular detection, depends on chemical and electromagnetic enhancements. While recent advances in instrumentation and substrate design have expanded the utility, reproducibility, and quantitative capabilities of SERS, some challenges persist. In this review, advances in quantitative SERS detection are discussed as they relate to intermolecular interactions, surface selection rules, and target molecule solubility and accessibility.
View Article and Find Full Text PDFThe impact of tunable morphologies and plasmonic properties of gold nanostars are evaluated for the surface enhanced Raman scattering (SERS) detection of uranyl. To do so, gold nanostars are synthesized with varying concentrations of the Good's buffer reagent, 2-[4-(2-hydroxyethyl)-1-piperazinyl]propanesulfonic acid (EPPS). EPPS plays three roles including as a reducing agent for nanostar nucleation and growth, as a nanostar-stabilizing agent for solution phase stability, and as a coordinating ligand for the capture of uranyl.
View Article and Find Full Text PDFWe describe a new species of the genus Subdoluseps Freitas, Datta-Roy, Karanth, Grismer Siler from a coastal area in southern Vietnam. Subdoluseps vietnamensis sp. nov.
View Article and Find Full Text PDFThe plasmonic properties of carboxylated gold nanostars distributed on amidoximated polyacrylonitrile (AO PAN) electrospun polymer films scale with surface-enhanced Raman scattering (SERS) intensities for coordinated uranium(VI) oxide (uranyl) species. This two-step plasmonic sensor first isolates uranyl from solution using functionalized polymers; then carboxylated gold nanostars are subsequently deposited for SERS. Spatially resolved localized surface plasmon resonance (LSPR) and SERS facilitate correlated nanostar optical density and uranyl quantification.
View Article and Find Full Text PDFSilica membrane stabilized gold coated silver (Ag@Au) (i.e., internally etched silica coated Ag@Au (IE Ag@Au@SiO2)) nanoparticles promote surface-enhanced Raman scattering (SERS) activity and detection of uranium(vi) oxide (uranyl) under harsh solution phase conditions including at pH 3-7, with ionic strengths up to 150 mM, and temperatures up to 37 °C for at least 10 hours.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
July 2020
Aggregates or clusters of primary metal nanoparticles in solution are one of the most widely used platforms for surface-enhanced Raman scattering (SERS) measurements because these nanostructures induce strong electric fields or hot spots between nanoparticles and as a result, SERS signals. While SERS signals are observed to vary with time, the impact of cluster formation mechanisms on SERS activity has been less studied. Herein, variations in time-dependent SERS signals from gold nanosphere clusters and aggregates are considered both experimentally and theoretically.
View Article and Find Full Text PDFThe term "nanoparticle stability" is widely used to describe the preservation of a particular nanostructure property ranging from aggregation, composition, crystallinity, shape, size, and surface chemistry. As a result, this catch-all term has various meanings, which depend on the specific nanoparticle property of interest and/or application. In this feature article, we provide an answer to the question, "What does nanoparticle stability mean?".
View Article and Find Full Text PDFUnwanted nanoparticle aggregation and/or agglomeration may occur when anisotropic nanoparticles are dispersed in various solvents and matrices. While extended Derjaguin-Landau-Verwey-Overbeek (DLVO) theory has been successfully applied to predict nanoparticle stability in solution, this model fails to accurately predict the physical stability of anisotropic nanostructures; thus limiting its applicability in practice. Herein, DLVO theory was used to accurately predict gold nanostar stability in solution by investigating how the choice of the nanostar dimension considered in calculations influences the calculated attractive and repulsive interactions between nanostructures.
View Article and Find Full Text PDFReproducible detection of uranyl, an important biological and environmental contaminant, from complex matrixes by surface-enhanced Raman scattering (SERS) is successfully achieved using amidoximated-polyacrylonitrile (AO-PAN) mats and carboxylated gold (Au) nanostars. SERS detection of small molecules from a sample mixture is traditionally limited by nonspecific adsorption of nontarget species to the metal nanostructures and subsequent variations in both the vibrational frequencies and intensities. Herein, this challenge is overcome using AO-PAN mats to extract uranyl from matrixes ranging in complexity including HEPES buffer, Ca(NO) and NaHCO solutions, and synthetic urine.
View Article and Find Full Text PDFMorphological, acoustic and molecular analyses result in the description of Leptolalax rowleyae sp. nov., a new species of frog in the Megophryidae, belonging to the L.
View Article and Find Full Text PDFIn this paper, we report on the design, simulation, and experimental analysis of a miniaturized device that can generate multiple circulated jet flows. The device is actuated by a lead zirconate titanate (PZT) diaphragm. The flows in the device were studied using three-dimensional transient numerical simulation with the programmable open source OpenFOAM and was comparable to the experimental result.
View Article and Find Full Text PDFA community-based assessment of thalassemias and hemoglobinopathies was conducted at the Thua Thien Hue Province, Central Vietnam. By cluster sampling, a total of 410 pregnant women attending the antenatal care service at 30 commune health centers were recruited consecutively from September 2011 to June 2012. Hemoglobin (Hb) analysis was performed using an automated Hb analyzer.
View Article and Find Full Text PDFThe behavior of prostate carcinoma (PC3) cells and human dermal fibroblast (HDF) cells when incubated with sedimented Au NPs in vitro is studied. Darkfield microscopy demonstrates that both PC3 and HDF cells can "vacuum" Au NPs from the surface. Mean square displacement and mean cumulative square distance of cells shows that PC3 migration decreases in the presence of Au NPs while for HDF, migration is dependent on the surface charge and shape of Au NPs.
View Article and Find Full Text PDFLactobacillus plantarum is a ubiquitous microorganism that is able to colonize several ecological niches, including vegetables, meat, dairy substrates and the gastro-intestinal tract. An extensive phenotypic and genomic diversity analysis was conducted to elucidate the molecular basis of the high flexibility and versatility of this species. First, 185 isolates from diverse environments were phenotypically characterized by evaluating their fermentation and growth characteristics.
View Article and Find Full Text PDF