Prostate and breast cancer incidence rates have been on the rise in Japan, emphasising the need for precise histopathological diagnosis to determine patient prognosis and guide treatment decisions. However, existing diagnostic methods face numerous challenges and are susceptible to inconsistencies between observers. To tackle these issues, artificial intelligence (AI) algorithms have been developed to aid in the diagnosis of prostate and breast cancer.
View Article and Find Full Text PDFThe application of deep learning for the detection of lymph node metastases on histologic slides has attracted worldwide attention due to its potentially important role in patient treatment and prognosis. Despite this attention, false-positive predictions remain problematic, particularly in the case of reactive lymphoid follicles. In this study, a novel two-step deep learning algorithm was developed to address the issue of false-positive prediction while maintaining accurate cancer detection.
View Article and Find Full Text PDF