Identification of novel antibiotics remains a major challenge for drug discovery. The present study explores use of phenotypic readouts beyond classical antibacterial growth inhibition adopting a combined multiparametric high content screening and genomic approach. Deployment of the semi-automated bacterial phenotypic fingerprint (BPF) profiling platform in conjunction with a machine learning-powered dataset analysis, effectively allowed us to narrow down, compare and predict compound mode of action (MoA).
View Article and Find Full Text PDFThe rising incidence of obesity and related disorders such as diabetes and heart disease has focused considerable attention on the discovery of new therapeutics. One promising approach has been to increase the number or activity of brown-like adipocytes in white adipose depots, as this has been shown to prevent diet-induced obesity and reduce the incidence and severity of type 2 diabetes. Thus, the conversion of fat-storing cells into metabolically active thermogenic cells has become an appealing therapeutic strategy to combat obesity.
View Article and Find Full Text PDFDirect transdifferentiation of somatic cells is a promising approach to obtain patient-specific cells for numerous applications. However, conversion across germ-layer borders often requires ectopic gene expression with unpredictable side effects. Here, we present a gene-free approach that allows efficient conversion of human fibroblasts via a transient progenitor stage into Schwann cells, the major glial cell type of peripheral nerves.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
June 2014
Optical aberrations have detrimental effects in multiphoton microscopy. These effects can be curtailed by implementing model-based wavefront sensorless adaptive optics, which only requires the addition of a wavefront shaping device, such as a deformable mirror (DM) to an existing microscope. The aberration correction is achieved by maximizing a suitable image quality metric.
View Article and Find Full Text PDFInteractions with the extracellular matrix (ECM) through integrin adhesion receptors provide cancer cells with physical and chemical cues that act together with growth factors to support survival and proliferation. Antagonists that target integrins containing the β1 subunit inhibit tumor growth and sensitize cells to irradiation or cytotoxic chemotherapy in preclinical breast cancer models and are under clinical investigation. We found that the loss of β1 integrins attenuated breast tumor growth but markedly enhanced tumor cell dissemination to the lungs.
View Article and Find Full Text PDFCell spheroids (CS) embedded in 3D extracellular matrix (ECM) serve as in vitro mimics for multicellular structures in vivo. Such cultures, started either from spontaneous cell aggregates or single cells dispersed in a gel are time consuming, applicable to restricted cell types only, prone to high variation, and do not allow CS formation with defined spatial distribution required for high-throughput imaging. Here, we describe a method where cell-polymer suspensions are microinjected as droplets into collagen gels and CS formation occurs within hours for a broad range of cell types.
View Article and Find Full Text PDFIntegrin-mediated adhesion regulates multiple signaling pathways. Our group previously showed that ectopic expression of different integrin beta-subunits in the neuroepithelial cell line GE11, has distinct effects on cell morphology, actin cytoskeletal organization, and on focal contact distribution. In this report we have investigated changes in gene transcription levels resulting from overexpression of the integrin beta3 subunit.
View Article and Find Full Text PDF