Publications by authors named "HoSeok Park"

Transition bimetallic alloy-based catalysts are regarded as attractive alternatives for the oxygen evolution reaction (OER), attributed to their competitive economics, high conductivity and intrinsic properties. Herein, we prepared FeNi/C nanorods with largely improved catalytic OER activity by combining hydrothermal reaction and thermal annealing treatment. The temperature effect on the crystal structure and chemical composition of the FeNi/C nanorods was revealed, and the enhanced catalytic performance of FeNi/C with an annealing temperature of 400 °C was confirmed by several electrochemical tests.

View Article and Find Full Text PDF

With the development of microelectronic devices having miniaturized and integrated electronic components, an efficient thermal management system with lightweight materials, which have outstanding thermal conductivity and processability, is becoming increasingly important. Recently, the use of polymer-based thermal management systems has attracted much interest due to the intrinsic excellent properties of the polymer, such as the high flexibility, low cost, electrical insulation, and excellent processability. However, most polymers possess low thermal conductivity, which limits the thermal management applications of them.

View Article and Find Full Text PDF

Development of nanostructured materials with enhanced redox reaction capabilities is important for achieving high energy and power densities in energy storage systems. Here, we demonstrate that the nanohybridization of ionic liquids (ILs, 1-butyl-3-methylimidazolium tetrafluoroborate) and cobalt hydroxide (Co(OH)2) through ionothermal synthesis leads to a rapid and reversible redox reaction. The as-synthesized IL-Co(OH)2 has a favorable, tailored morphology with a large surface area of 400.

View Article and Find Full Text PDF

The charge transfer interactions between reduced graphene oxides and conjugated block copolymers were confirmed by various spectroscopic methods, giving rise to manipulation of the electrical properties of the former.

View Article and Find Full Text PDF

Despite many efforts on the synthesis of inorganic nanomaterials with uniform structure and narrow size distribution in a fast and continuous way, it is still a critical challenge in the chemistry research community due to the uncontrollable mass and heat transfer and the harsh experimental conditions of high temperature and pressure. Here we report a droplet- and ionic liquid-assisted microfluidic (DIM) synthesis method, which takes full advantage of both ionic liquids and droplet-assisted microreaction systems, for an ultrafast, mild, and continuous synthesis of various inorganic nanomaterials that takes only tens of minutes rather than days that are usually needed to synthesize. In particular, unaccommodating inorganic nanomaterials that are difficult to produce, such as nanoporous ZSM-5, γ-AlOOH, and β-FeOOH nanorods, were synthesized in only "20 minutes" of reaction time even with simple instrument.

View Article and Find Full Text PDF

The realization of highly flexible and all-solid-state energy-storage devices strongly depends on both the electrical properties and mechanical integrity of the constitutive materials and the controlled assembly of electrode and solid electrolyte. Herein we report the preparation of all-solid-state flexible supercapacitors (SCs) through the easy assembly of functionalized reduced graphene oxide (f-RGO) thin films (as electrode) and solvent-cast Nafion electrolyte membranes (as electrolyte and separator). In particular, the f-RGO-based SCs (f-RGO-SCs) showed a 2-fold higher specific capacitance (118.

View Article and Find Full Text PDF

In this research, we report an innovative, chemical strategy for the in situ synthesis and direct two-dimensional (2D) arraying of various nanoparticles (NPs) on graphenes using both programmed-peptides as directing agents and graphenes as pre-formed 2D templates. The peptides were designed for manipulating the enthalpic (coupled interactions) constraint of the global system. Along with the functionalization of graphene for the stable dispersion, peptides directed the growth and array of NPs in a controllable manner.

View Article and Find Full Text PDF

The chemistry and structure of ion channels within the polymer electrolytes are of prime importance for studying the transport properties of electrolytes as well as for developing high-performance electrochemical devices. Despite intensive efforts on the synthesis of polymer electrolytes, few studies have demonstrated enhanced target ion conduction while suppressing unfavorable ion or mass transport because the undesirable transport occurs through an identical pathway. Herein, we report an innovative, chemical strategy for the synthesis of polymer electrolytes whose ion-conducting channels are physically and chemically modulated by the ionic (not electronic) conductive, functionalized graphenes and for a fundamental understanding of ion and mass transport occurring in nanoscale ionic clusters.

View Article and Find Full Text PDF

We demonstrated a simple route to simultaneously synthesize PdO and boehmite nanoparticles, and to directly immobilize the former on the latter using an ionic liquid (IL)-assisted one-pot solution method. PdO nanoparticles were directly immobilized on boehmite nanoparticles, and their amount and distribution were controlled by the stoichiometry of the mixture. In particular, γ-alumina nanofibers, which were topochemically transformed from boehmites, exhibited lengths of ca.

View Article and Find Full Text PDF

We demonstrated thermal transitions and physical gelation of binary ionic salts through interionic interactions, which consist of pyrrolidinium-N-propanesulfonate zwitterionic compound (PyrZIC) and lithium bis(trifluorosulfonyl)imide (LiTFSI). The transition behaviors of binary ionic gels were attributed to conformational changes in the cations and anions of PyrZIC and LiTFSI as analyzed by density functional theory (DFT), principal component analysis (PCA), and two-dimensional infrared correlation spectroscopy (2D IR COS). Furthermore, the geometries of binary PyrZIC-LiTFSI systems were strongly influenced by the electrostatic interactions between two ionic salts.

View Article and Find Full Text PDF

Graphene sheets have the potential for practical applications in electrochemical devices, but their development has been impeded by critical problems with aggregation of graphene sheets. Here, we demonstrated a facile and bottom-up approach for fabrication of DNA sensor device using water-soluble sulfonated reduced graphene oxide (SRGO) sheets via microwave-assisted sulfonation (MAS), showing enhanced sensitivity, reliability, and low detection limit. Key to achieving these performances is the fabrication of the SRGOs, where the MAS method enabled SRGOs to be highly dispersed in water (10 mg mL(-1)) due to the acidic sulfonated groups generated within 3 min of the functionalization reaction.

View Article and Find Full Text PDF

We have demonstrated the fabrication of the biosensor platforms by means of the integration of the genetically engineered fusion proteins and the uniform gold nanoparticle-deposited multi-walled nanotube hybrid (Au-MWNT-HB) films for the detection of C-reactive protein (CRP). Au-MWNT-HB films were used as a good electrochemical transducer due to their excellent electrical properties and large surface areas for the signal transduction, while the genetically engineered fusion proteins, or 6His-GBP-SpA fusion proteins, specifically bind onto the surface of the Au-MWNT-HB films and efficiently immobilize bioreceptors for the detection of CRP. As-obtained biosensor platforms were characterized by electrochemical and optical analysis and revealed better performance compared to conventional Au-based biosensors.

View Article and Find Full Text PDF

We report the preparation of free-standing flexible conductive reduced graphene oxide/Nafion (RGON) hybrid films by a solution chemistry that utilizes self-assembly and directional convective-assembly. The hydrophobic backbone of Nafion provided well-defined integrated structures, on micro- and macroscales, for the construction of hybrid materials through self-assembly, while the hydrophilic sulfonate groups enabled highly stable dispersibility ( approximately 0.5 mg/mL) and long-term stability (2 months) for graphene.

View Article and Find Full Text PDF

Geometric and conformational changes of zwitter-type ionic liquids (ZILs) due to hydrogen-bonding interactions with water molecules are investigated by density functional theory (DFT), two-dimensional IR correlation spectroscopy (2D IR COS), and pulsed-gradient spin-echo NMR (PGSE NMR). Simulation results indicate that molecular structures in the optimized states are strongly influenced by hydrogen bonding of water molecules with the sulfonate group or imidazolium and pyrrolidinium rings of 3-(1-methyl-3-imidazolio)propanesulfonate (1) and 3-(1-methyl-1-pyrrolidinio)propanesulfonate (2), respectively. Concentration-dependent 2D IR COS reveals kinetic conformational changes of the two ZIL-H(2)O systems attributable to intermolecular interactions, as well as the interactions of sulfonate groups and imidazolium or pyrrolidinium rings with water molecules.

View Article and Find Full Text PDF

Energy transfer in self-assembled ionic liquids (ILs) and iron oxyhydroxide nanocrystals and the controlled surface chemistry of functionalized nanomaterials for photocatalytic applications are reported. Self-assembled ILs play the role of multifunctional materials in terms of constructing a well-designed nanostructure, controlling the surface chemistry, and triggering the energy transfer of functionalized materials. IL-functionalized beta-FeOOH nanorods show approximately 10-fold higher performances than those of commercial materials due to the synergistic effect of well-defined nanomaterials in diffusion-controlled reactions, specific interactions with target pollutants, and energy transfers in hybrid materials.

View Article and Find Full Text PDF

The transition behavior and dynamics of ionic transport were strongly influenced by changes in the crystal structure and interaction field of the crystalline ionic gel electrolytes with respect to chemical compositions, as proven by impedance, (7)Li NMR, PCA and 2D IR COS.

View Article and Find Full Text PDF

Green one-pot solution chemistry described herein could delicately manipulate the size and shape of iron oxyhydroxide nanocrystals, even in the aqueous phase, and easily derive a family of iron-based nanomaterials.

View Article and Find Full Text PDF

The two-dimensional (2D) infrared correlation spectra obtained from the reaction time- and concentration-dependent IR spectra elucidates the reaction of CO2 and NH3 in an aqueous solution for CO2 absorption. In the synchronous 2D correlation spectra, the interrelation of the proton with carbamate and bicarbonate indicates that the pH level affected the formation reactions of the two products. Furthermore, the interrelation of carbamate with bicarbonate confirmed the conversion of carbamate into bicarbonate with the release of protons (or the decrease of the pH).

View Article and Find Full Text PDF

Aqueous ammonia absorbent (10 wt %) was modified with four kinds of additives (1 wt %) including amine and hydroxyl groups, i.e., 2-amino-2-methyl-1-propanol (AMP), 2-amino-2-methyl-1,3-propandiol (AMPD), 2-amino-2-ethyl-1,3-propandiol (AEPD), and tri(hydroxymethyl) aminomethane (THAM), for CO(2) capture.

View Article and Find Full Text PDF