The selective synthesis of different products from the same starting materials in water, which is the most abundant solvent in nature, is a crucial issue as it maximizes the utilization of materials. Realizing such reactions for ketones is of considerable importance because numerous organic functionalities can be obtained via nucleophilic addition reactions. Herein, we report chemoselective reduction and oxidation reactions of 1,2-diketones in water, which initiates anionic electron transfer from the inorganic electride [Ca24Al28O64](4+)·4e(-), through controlling the pathway of the electrons to substrates.
View Article and Find Full Text PDFA difference in work function plays a key role in charge transfer between two materials. Inorganic electrides provide a unique opportunity for electron transfer since interstitial anionic electrons result in a very low work function of 2.4-2.
View Article and Find Full Text PDFBackground: Although cesarean delivery and prenatal exposure to antibiotics are likely to affect the gut microbiome in infancy, their effect on the development of atopic dermatitis (AD) in infancy is unclear. The influence of individual genotypes on these relationships is also unclear. To evaluate with a prospective birth cohort study whether cesarean section, prenatal exposure to antibiotics, and susceptible genotypes act additively to promote the development of AD in infancy.
View Article and Find Full Text PDF