Publications by authors named "Ho-Leung Au-Yeung"

A series of heteroleptic cyclometalated platinum(II) complexes, [Pt(C^N)(O^O)], (1-10) with various donors and acceptors has been synthesized and characterized by H NMR spectroscopy, elemental analyses, infrared spectroscopy and mass spectrometry. The X-ray structure of 2 has also been determined. The electrochemical and photophysical properties of the platinum(II) complexes were studied.

View Article and Find Full Text PDF

Isomeric double-decker silsesquioxane-functionalized dinuclear alkynylplatinum(ii) terpyridine complexes demonstrate self-association behaviours via the stabilisation of hydrophobic, PtPt and/or π-π stacking interactions. These supramolecular architectures and molecular packings are found to be closely related to the isomeric configurations of the complexes and have been investigated using various spectroscopic studies.

View Article and Find Full Text PDF

A series of alkynylplatinum(ii) terpyridine complexes functionalized with polyhedral oligomeric silsesquioxane (POSS) moieties has been demonstrated to exhibit drastic color changes and give various distinctive nanostructures with interesting multi-stage morphological transformations from spheres to nanoplates in response to solvent conditions through the interplay of various intermolecular interactions, including hydrophilic-hydrophilic, hydrophobic-hydrophobic, Pt···Pt and π-π stacking interactions. These supramolecular architectures can be systematically modified and controlled through the molecular design and the variation of solvent compositions. In particular, drastic changes in color in response to solvent polarity were observed through the incorporation of the charged moieties, representing a new class of potential candidates for functional materials with sensing or imaging capabilities.

View Article and Find Full Text PDF

An alkynylplatinum(II) terpyridine complex functionalized with polyhedral oligomeric silsesquioxanes (POSS) moieties has been demonstrated to exhibit self-association behavior to give various distinguishable nanostructures with interesting morphological transformation from rings to rods in response to solvent conditions through the stabilization of Pt···Pt and π-π stacking interactions as well as hydrophobic-hydrophobic interactions. These changes can be systemically controlled by varying the solvent composition and have been studied by (1)H NMR, electron microscopy, UV-vis absorption, and emission spectroscopies.

View Article and Find Full Text PDF