Outgrowing endothelial progenitor-derived cells (EPDCs) originate from a novel hierarchy of endothelial progenitor cells. In this study, EPDCs isolated from human cord blood were examined for phenotype and functional features upon aging. Young or aged EPDCs were similar to human umbilical vein endothelial cells (HUVECs), in exhibiting typical endothelial phenotypes.
View Article and Find Full Text PDFNeovascularization plays a critical role in the growth and metastatic spread of tumors and involves recruitment of circulating endothelial progenitor cells (EPC) from bone marrow as well as sprouting of preexisting endothelial cells. In this study, we examined if EPCs could promote tumor angiogenesis and would be an effective cellular target for an angiogenesis inhibitor, the recombinant kringle domain of tissue-type plasminogen activator (TK1-2). When TK1-2 was applied in the ex vivo culture of EPCs isolated from human cord blood, TK1-2 inhibited adhesive differentiation of mononuclear EPCs into endothelial-like cells.
View Article and Find Full Text PDFCirculating endothelial progenitor cells (EPCs) contribute to neovascularization in tumor or ischemic tissues by multi-step events, including adhesion, migration, chemoattraction, and differentiation to endothelial cells. Anti-angiogenic RGD-peptides have been shown to directly induce apoptosis in human umbilical vein endothelial cells (HUVECs) and T cells. Here, we examined the effects of RGD-peptides on EPCs in terms of adhesive differentiation and apoptosis.
View Article and Find Full Text PDFThe two-kringle domain of tissue-type plasminogen activator (TK1-2) has been identified as a potent angiogenesis inhibitor by suppressing endothelial cell proliferation, in vivo angiogenesis, and in vivo tumor growth. Escherichia coli-derived, non-glycosylated TK1-2 more potently inhibits in vivo tumor growth, whereas Pichia expression system is more efficient for producing TK1-2 as a soluble form, albeit accompanying N-glycosylation. Therefore, in order to avoid immune reactivity and improve in vivo efficacy, we expressed the non-glycosylated form of TK1-2 in Pichia pastoris and evaluated its activity in vitro.
View Article and Find Full Text PDFTissue-type plasminogen activator (tPA) is a multidomain serine protease that converts the zymogen plasminogen to plasmin. tPA contains two kringle domains which display considerable sequence identity with those of angiostatin, an angiogenesis inhibitor. TK1-2, a recombinant kringle domain composed of t-PA kringles 1 and 2 (Ala(90)-Thr(263)), was produced by both bacterial and yeast expression systems.
View Article and Find Full Text PDF