Magnetic nanocomposite fibers are a topic of intense research due to their potential breakthrough applications such as smart magnetic-field-response devices and electromagnetic interference (EMI) shielding. However, clustering of nanoparticles in a polymer matrix is a recognized challenge for obtaining a property-controllable nanocomposite fiber. Another challenge is that the strength and ductility of the nanocomposite fiber decrease significantly with increased weight loading of magnetic nanoparticles in the fiber.
View Article and Find Full Text PDFCarbon nanomaterials are generally used to promote the thermal conductivity of polymer composites. However, individual graphene nanoplatelets (GNPs) or carbon nanotubes (CNTs) limit the realization of the desirable thermal conductivity of the composite in both through- and in-plane directions. In this work, we present the thermal conductivity enhancement of the epoxy composite with carbon hybrid fillers composed of CNTs directly grown on the GNP support.
View Article and Find Full Text PDF