Allelopathy is a biological process in which one organism releases biochemicals that affect the growth and development of other organisms. The current investigation sought to determine the allelopathic effect of Rumex acetosella on white clover (Trifolium repens) growth and development by using its shoot extract (lower IC value) as a foliar treatment. Here, different concentrations (25, 50, 100, and 200 g/L) of shoot extract from Rumex acetosella were used as treatments.
View Article and Find Full Text PDFRecently, microorganism and exogenous melatonin application has been recognized as an efficient biological tool for enhancing salt tolerance and heavy metal detoxification in agriculture crops. Thus, the goal of this study was to isolate and evaluate a novel melatonin-producing plant growth promoting bacterium. With high-throughput whole genome sequencing, phytohormone measurements, expression profiling, and biochemical analysis, we can identify a novel PGPB that produces melatonin and unravel how it promotes soybean growth and development and protects against salt and Cd stress.
View Article and Find Full Text PDFThe application of N-acetylglucosamine (GlcNAc) and melatonin (Mel) in agriculture could be a promising avenue for improving crop resilience and productivity, especially under challenging environmental conditions. In the current study, we treated the cucumber plant with GlcNAc and Mel solely and combinedly under salt stress (150 mM) then studied photosynthetic attributes using the transient OJIP fluorescence method. The results showed that the combination of GlcNAc × Mel significantly improved the plant morphological attributes, such as root and shoot biomass, and also improved chlorophyll and photosynthetic components.
View Article and Find Full Text PDFSalinity hinders plant growth, posing a substantial challenge to sustainable agricultural yield maintenance. The application of plant growth-promoting rhizobacteria (PGPR) offers an emerging strategy to mitigate the detrimental effects of high salinity levels. This study aimed to isolate and identify gibberellin-producing bacteria and their impact on the seed germination of (mallow) and (broccoli) under salt stress.
View Article and Find Full Text PDFIntroduction: Ambient temperature-induced hypocotyl elongation in Arabidopsis seedlings is sensed by the epidermis-localized phytochrome B (phyB) and transduced into auxin biosynthesis via a basic helix-loop-helix transcription factor, phytochrome-interacting factor 4 (PIF4). Once synthesized, auxin travels down from the cotyledons to the hypocotyl, triggering hypocotyl cell elongation. Thus, the phyB-PIF4 module involved in thermosensing and signal transduction is a potential genetic target for engineering warm temperature-insensitive plants.
View Article and Find Full Text PDF