Publications by authors named "Ho-Juhn Song"

Purpose: Given that osimertinib is the only approved third-generation EGFR-TKI against activating and resistant T790M mutated non-small cell lung cancer (NSCLC), additional mutant-selective inhibitors with a higher efficacy, especially for brain metastases, with favorable toxicity profile are still needed. In this study, we investigated the antitumor efficacy of YH25448, an oral, mutant-selective, irreversible third-generation EGFR-TKI in preclinical models.

Experimental Design: Antitumor activity of YH25448 was investigated using mutant -expressing Ba/F3 cells and various lung cancer cell lines.

View Article and Find Full Text PDF

Spleen tyrosine kinase (SYK) is a cytosolic non-receptor protein tyrosine kinase. Because SYK mediates key receptor signaling pathways involving the B cell receptor and Fc receptors, SYK is an attractive target for autoimmune disease and cancer treatments. To date, representative oral SYK inhibitors, including fostamatinib (R406 or R788), entospletinib (GS-9973), cerdulatinib (PRT062070), and TAK-659, have been assessed in clinical trials.

View Article and Find Full Text PDF

The clinical utility of approved EGFR small-molecule kinase inhibitors is plagued both by toxicity against wild-type EGFR and by metastatic progression in the central nervous system, a disease sanctuary site. Here, we report the discovery and preclinical efficacy of GNS-1486 and GNS-1481, two novel small-molecule EGFR kinase inhibitors that are selective for T790M-mutant isoforms of EGFR. Both agents were effective in multiple mouse xenograft models of human lung adenocarcinoma (T790M-positive or -negative), exhibiting less activity against wild-type EGFR than existing approved EGFR kinase inhibitors (including osimertinib).

View Article and Find Full Text PDF

Unlabelled: Spleen tyrosine kinase (SYK) is a cytosolic nonreceptor protein tyrosine kinase that mediates key signal transduction pathways following the activation of immune cell receptors. SYK regulates cellular events induced by the B-cell receptor and Fc receptors with high intrinsic activity. Furthermore, SYK has been regarded as an attractive target for the treatment of autoimmune diseases and cancers.

View Article and Find Full Text PDF

A series of pyrazolylpyrimidine scaffold based Syk inhibitors were synthesized and evaluated for their biological activities and selectivity. Lead optimization efforts provided compounds with potent Syk inhibition in both enzymatic and TNF-α release assay.

View Article and Find Full Text PDF

Aberrant activations of Fms-like tyrosine receptor kinase (FLT) 3 are implicated in the pathogenesis of 20% to 30% of patients with acute myeloid leukemia (AML). G-749 is a novel FLT3 inhibitor that showed potent and sustained inhibition of the FLT3 wild type and mutants including FLT3-ITD, FLT3-D835Y, FLT3-ITD/N676D, and FLT3-ITD/F691L in cellular assays. G-749 retained its inhibitory potency in various drug-resistance milieus such as patient plasma, FLT3 ligand surge, and stromal protection.

View Article and Find Full Text PDF

Human Pim1 kinase is a serine/threonine protein kinase that plays important biological roles in cell survival, apoptosis, proliferation, and differentiation. Moreover, Pim1 is up-regulated in various hematopoietic malignancies and solid tumors. Thus, Pim1 is an attractive target for cancer therapeutics, and there has been growing interest in developing small molecule inhibitors for Pim1.

View Article and Find Full Text PDF

The mechanism of widespread neuronal death occurring in Alzheimer's disease (AD) remains enigmatic even after extensive investigation during the last two decades. Amyloid beta 42 peptide (Abeta(1-42)) is believed to play a causative role in the development of AD. Here we expressed human Abeta(1-42) and amyloid beta 40 (Abeta(1-40)) in Drosophila neurons.

View Article and Find Full Text PDF

Alzheimer's (AD) is a progressive neurodegenerative disease that afflicts a significant fraction of older individuals. Although a proteolytic product of the Amyloid precursor protein, the Alphabeta42 polypeptide, has been directly implicated in the disease, the genes and biological pathways that are deployed during the process of Alphabeta42 induced neurodegeneration are not well understood and remain controversial. To identify genes and pathways that mediated Alphabeta42 induced neurodegeneration we took advantage of a Drosophila model for AD disease in which ectopically expressed human Alphabeta42 polypeptide induces cell death and tissue degeneration in the compound eye.

View Article and Find Full Text PDF

Sustained increases in life expectancy have underscored the importance of managing diseases with a high incidence in late life, such as various neurodegenerative conditions. Alzheimer's disease (AD) is the most common among these, and consequently significant research effort is spent on studying it. Although a lot is known about the pathology of AD and the role of beta-amyloid (Abeta) peptides, the complete network of interactions regulating Abeta metabolism and toxicity still eludes us.

View Article and Find Full Text PDF

Alzheimer's disease is a neurological disorder resulting in the degeneration and death of brain neurons controlling memory, cognition and behavior. Although overproduction of Abeta peptides is widely considered a causative event in the disease, the mechanisms by which Abeta peptides cause neurodegeneration and the processes of Abeta clearance and degradation remain unclear. To address these issues, we have expressed the Abeta peptides in Drosophila melanogaster.

View Article and Find Full Text PDF

The fruitless (fru) gene acts sex-nonspecifically in the development of the embryonic central nervous system (CNS) and has sex as well as sex-nonspecific functions in the development of the adult CNS. In the embryo, sex-nonspecific fru mRNAs and proteins are widely expressed during neurogenesis and present in both neurons and glia. To assess whether the fru gene played any role in fate determination of neuronal precursors and neurons, we examined the development of Eve-positive (Eve(+)) GMCs and neurons in fru mutants.

View Article and Find Full Text PDF

The fruitless (fru) gene in Drosophila melanogaster is a multifunctional gene that has sex-specific functions in the regulation of male sexual behavior and sex-nonspecific functions affecting adult viability and external morphology. While much attention has focused on fru's sex-specific roles, less is known about its sex-nonspecific functions. We have examined fru's sex-nonspecific role in embryonic neural development.

View Article and Find Full Text PDF