Thermal imaging plays a vital role in structural health monitoring of various materials and provides insight into the defect present due to aging, deterioration, and fault during construction. This study investigated the effectiveness of spatial filters during pre-processing of thermal images and a correlation technique in post-processing, as well as exploited its application in non-destructive testing and evaluation of defects in steel structures. Two linear filters (i.
View Article and Find Full Text PDFVarious postsynthesis processes for transition metal dichalcogenides have been attempted to control the layer number and defect concentration, on which electrical and optical properties strongly depend. In this work, we monitored changes in the photoluminescence (PL) of molybdenum disulfide (MoS) until laser irradiation generated defects on the sample flake and completely etched it away. Higher laser power was required to etch bilayer MoS compared to monolayer MoS.
View Article and Find Full Text PDFWe investigated the homogeneity and tolerance to heat of monolayer MoS using photoluminescence (PL) spectroscopy. For MoS on SiO, the PL spectra of the basal plane differ from those of the edge, but MoS on hexagonal boron nitride (h-BN) was electron-depleted with a homogeneous PL spectra over the entire area. Annealing at 450 °C rendered MoS on SiO homogeneously electron-depleted over the entire area by creating numerous defects; moreover, annealing at 550 °C and subsequent laser irradiation on the MoS monolayer caused a loss of its inherent crystal structure.
View Article and Find Full Text PDFvan der Waals (vdW) heterostructures with two-dimensional (2D) crystals such as graphene, hexagonal boron nitride (hBN) and transition metal dichalcogenides (TMDCs) allow us to demonstrate atomically thin field-effect transistors (FETs), photodetectors (PDs) and photovoltaic devices capable of higher performance and greater stability levels than conventional devices. Although there have been studies of gas molecule sensing with 2D crystal channels, vdW heterostructures based on 2D crystals have not been employed thus far. Here, utilizing graphene/WS/graphene (G/WS/G) vdW heterostructure tunnel FETs, we demonstrate the rectification behavior of the sensitivity signal by tuning the WS potential barriers as a function of the gas molecule concentration and devise a fingerprint map of the sensitivity variation corresponding to an individual ratio of two different molecules in a gas mixture.
View Article and Find Full Text PDFGraphene bubbles are often formed when graphene and other layered two-dimensional materials are vertically stacked as van der Waals heterostructures. Here, we investigate how graphene bubbles and their related disorder impact the quantum transport behavior of graphene in the absence and presence of external magnetic fields. By combining experimental observations and numerical simulations, we find that the disorder induced by the graphene bubbles is mainly from p-type dopants and the charge transport in pristine graphene can be severely influenced by the presence of bubbles via long- and short-range scattering even with a small bubble-coverage of 2% and below.
View Article and Find Full Text PDFInelastic electron tunneling spectroscopy is a powerful technique for investigating lattice dynamics of nanoscale systems including graphene and small molecules, but establishing a stable tunnel junction is considered as a major hurdle in expanding the scope of tunneling experiments. Hexagonal boron nitride is a pivotal component in two-dimensional Van der Waals heterostructures as a high-quality insulating material due to its large energy gap and chemical-mechanical stability. Here we present planar graphene/h-BN-heterostructure tunneling devices utilizing thin h-BN as a tunneling insulator.
View Article and Find Full Text PDFWe have carried out surface-plasmon enhanced Raman spectroscopy (SERS) on 30 nm-thick GaN samples grown at various temperatures, in order to investigate the properties of ultra thin GaN films on sapphire. We found that the properties, such as the strain and the free-carrier density of the thin layers, were sensitively affected by the growth temperatures. Our results show that SERS, by selectively enhancing the Raman signal near the surface, can be a very useful technique to investigate the optical properties of ultra-thin GaN films and their initial growth mode.
View Article and Find Full Text PDFWe present a recent experimental study on the application of nanoporous silicon (np-Si) to an optical vapor sensor. We fabricated the micro-system based on a glass-nanoporous silicon layer on a p(+)-type silicon wafer. To check the selectivity and sensitivity of the np-Si layer to organic vapors, we prepared three types of np-Si layer samples--a single layer, distributed Bragg reflector (DBR) layer, and microcavity layer--and investigated its reflectance spectra upon exposure to different concentrations of various organic vapors.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
February 2012
We investigated the critical conditions to realize reliable and nano-engineered templates for surface-plasmon enhanced Raman scattering (SERS). Ultra-sensitive SERSs of thymine oligonucleotides were successfully realized on the template of Au nanoparticle arrays which were prepared by the combination of electron-beam lithography and post-chemical modification techniques. Drastic enhancement of Raman signal from the thymine oligonucleotides was only observed on the optimized templates, where the tuning of the plasmon resonance condition and the formation of the hot spots were both critical.
View Article and Find Full Text PDF