In this study, a N-, C-, and S-doped titania (NCS-TiO2) composite was prepared by combining the titanium precursor with a single dopant source, and the photocatalytic activity of this system for the decomposition of volatile organic compounds (VOCs) at indoor-concentration levels, under exposure to visible light, was examined. The NCS-TiO2 composite and the pure TiO2 photocatalyst, used as a reference, were characterized via X-ray diffraction, scanning electron microscopy, ultraviolet-visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. The average efficiencies of benzene, toluene, ethyl benzene, and o-xylene decomposition using NCS-TiO2 for were 70, 87, -100, and -100%, respectively, whereas the values obtained using the pure TiO2 powder were -0, 18, 49, and 51%, respectively.
View Article and Find Full Text PDFThe effects of CeO2 addition on the catalytic activity and the SO2 resistance of CeO2-doped MnO(x)-TiO2 catalysts were investigated for the low-temperature selective catalytic reduction (SCR) with NH3 of NO(x) emissions in marine applications. The most active catalyst was obtained from 30 wt% CeO2-MnO(x)-TiO2 catalyst in the whole temperature range of 100-300 degrees C at a low gas hourly space velocity (GHSV) of 10,000 h(-)1, and its de-NO(x) efficiency was higher than 90% over 250 degrees C. The enhanced catalytic activity may contribute to the dispersion state and catalytic acidity on the catalyst surface, and the highly dispersed Mn and Ce on the nano-scaled TiO2 catalyst affects the increase of Lewis and Brønsted acid sites.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
February 2016
Very smooth ultrananocrystalline diamond (UNCD) film growth on SiC substrate was achieved by a novel pretreatment technique consisted of SiC surface texturing and deaggregation of nanodiamond (ND) seed particles. Texturing of SiC surfaces in Ar and SF6/02 plasmas was found to be able to provide normalized roughness values of 0.5-7.
View Article and Find Full Text PDFPoly(glycidyl methadrylate-block-styrene) (PGMA-b-PS), a block copolymer consisting of glycidyl methacrylate and styrene, was synthesized via reversible addition-fragmentation chain transfer living polymerization. The synthesized PGMA-b-PS was then grafted with low-molecular-weight polyethylene glycol (PEG) via epoxy ring opening to give PGMA-g-PEG-b-PS, which was evaluated as an anti-biofouling coating material. As a preliminary test for the anti-biofouling effect, a protein adsorption experiment was performed on the synthesized block copolymer surface.
View Article and Find Full Text PDFThis study was investigated the role of magnesium (Mg2+) ion substituted biphasic calcium phosphate (Mg-BCP) spherical micro-scaffolds in osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells (hAT-MSCs). Mg-BCP micro-scaffolds with spherical morphology were successfully prepared using in situ co-precipitation and spray drying atomization process. The in vitro cell proliferation and differentiation of hAT-MSCs were determined up to day 14.
View Article and Find Full Text PDFUnlabelled: Iron-functionalized titanium dioxide (TiO2) composites with various Fe-to-Ti ratios were prepared on flexible glass fibers (GF-Fe-TiO2) via a sol-gel method, followed by a dip-coating process. The photocatalytic ability of these composites in degrading selected volatile organic compounds (VOCs; benzene, toluene, ethylbenzene, and o-xylene [BTEX]) at indoor concentration levels was examined. The GF-Fe-TiO2 composites were characterized using scanning electron microscopy, energy-dispersive X-ray elemental analysis, ultraviolet (UV)-visible spectroscopy, and X-ray diffraction.
View Article and Find Full Text PDFThe multi-year characteristics of ambient volatile organic compounds (VOCs) and their source contribution in a selected metropolitan (Seoul) and rural (Seokmolee) areas in Korea were investigated to provide the framework for development and implementation of ambient VOC control strategies. For Seoul, none of the three VOC groups exhibited any significant trend in their ambient concentrations, whereas for Seokmolee, they all showed a generally decreasing trend between 2005 and 2008 and an increasing trend after 2008. Two paraffinic (ethane and propane) and two olefin (ethylene and propylene) hydrocarbons displayed higher concentrations during the cold season than warm season, while the other target VOCs did not exhibit any significant trends.
View Article and Find Full Text PDFAlthough analysis of long-term data is necessary to obtain reliable information on characteristics of atmospheric visibility and its relationship with air pollution, it has rarely been performed. Therefore, a long-term evaluation of atmospheric visibility in characteristically different Korean cities, as well as a remote island, during 2001 to 2009, was performed in this study. In general, visibility decreased in the studied areas during the 9-yr study period.
View Article and Find Full Text PDFN-F-co-embedded titania (N-F-TiO₂) photocatalysts with varying N:F ratios were synthesized and tested for their ability to photocatalyze the degradation of pollutants present at indoor air levels using visible light. The synthesis was achieved using a solvothermal process with tetrabutyl titanate, urea and ammonium fluoride as sources of Ti, N and F, respectively. Three selected volatile organic compounds (toluene, ethyl benzene and o-xylene) were selected as the test pollutants.
View Article and Find Full Text PDFIn this study, one-dimensional rod-shaped titania (RST) and nitrogen-doped RST (N-RST) with different ratios of N to Ti were prepared using a hydrothermal method and their applications for purification of indoor toxic organic contaminants in a plug-flow reactor were examined under visible or ultraviolet (UV) irradiation. The surface characteristics of as-prepared photocatalysts were investigated by transmission electron microscopy (TEM), X-ray diffraction (XRD), and UV-visible spectroscopy. The TEM images revealed that both pure RSTs and N-RSTs displayed uniform and nanorod-shaped structures.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
July 2014
Low band gap organic semiconducting polymers were prepared as p-type donors for organic photovoltaic devices. A novel dibrominated monomer composed of phenothiazine, thiophene, and benzothiadiazole (DPDTBT) was synthesized as a low band gap core block. DPDTBT was copolymerized with three different boronic esters of dithiophene, fluorene, and phenothiazine by the Suzuki coupling polycondensation reaction.
View Article and Find Full Text PDFLi4Ti5O12 (LTO) is recognized as being one of the most promising anode materials for high power Li ion batteries; however, its insulating nature is a major drawback. In recent years, a simple thermal treatment carried out in a reducing atmosphere has been shown to generate oxygen vacancies (VO) for increasing the electronic conductivity of this material. Such structural defects, however, lead to re-oxidization over time, causing serious deterioration in anode performance.
View Article and Find Full Text PDFThis study aimed to prepare titania (TiO₂) nanotube (TNT) arrays grown on un-activated carbon fibers (UCFs), with the application of different TiO₂ loadings based on the coating-hydrothermal process, and to evaluate their photocatalytic activity for the degradation of sub-ppm levels of aromatic pollutants (benzene, toluene, ethyl benzene, and o-xylene (BTEX)) using a plug-flow photocatalytic reactor. The characteristics of the prepared photocatalysts were determined by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), transmission electron microscopy (TEM), UV-visible absorption spectroscopy (UV-Vis) and X-ray diffraction (XRD) analyses. Spectral analysis showed that the prepared photocatalysts were closely associated with the characteristics of one-dimensional nanostructured TiO₂ nanotubes for TNTUCFs and spherical shapes for TiO₂-coated UCF (TUCF).
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2013
Metal nanoparticles anchored on a graphene substrate find many applications such as sensors, catalysts, lithium ion batteries, etc. However, to date, graphene-metal nanohybrids have been synthesized by either covalent or ionic interactions between the graphene substrate and the metal nanoparticles. In this manuscript, we report a green and facile method to "bubble pack" metal nanoparticles on a graphene substrate by a simple process utilizing eco-friendly ionic liquids in conjunction with microwave heating.
View Article and Find Full Text PDFIn this study, we firstly report that hydrophilic graphite nanoparticles were successfully synthesized by liquid phase pulsed laser ablation method and the carbon-polymer composite sensor prepared with the nanoparticles showed a markedly enhanced gas sensing performance. The pulsed laser ablation of graphite rod in water generated well dispersed hydrophilic graphite nanoparticle and they showed an extremely high stability in water without any surfactant or stabilizer. FT-IR spectra showed that the hydrophilic functional groups such as carboxyl and carbonyl groups were simultaneously introduced onto the surface of graphite with the nanoparticle formation and the highly negative zeta potential due to the functional groups was the origin of the markedly high stability in water.
View Article and Find Full Text PDFHerein, we report a cheap and simple approach to solve the polysulfide dissolution problem in lithium sulfur batteries. It was interestingly revealed that a simple insertion of acetylene black mesh enabled us to obtain the capacity of 1491 mA h g(-1) at initial discharge and 1062 mA h g(-1) after 50 cycles.
View Article and Find Full Text PDF