Front Cell Dev Biol
April 2022
In addition to coordinating the storage and mobilization of neutral fat, lipid droplets (LDs) are conserved organelles that can accommodate additional cargos in order to support animal development. However, it is unclear if each type of cargo is matched with a specific subset of LDs. Here, we report that SEIP-1/seipin defines a subset of oocyte LDs that are required for proper eggshell formation in .
View Article and Find Full Text PDFDietary and symbiotic bacteria can exert powerful influence on metazoan lipid metabolism. Recent studies have emerged that microbiota have a role in animal obesity and related health disorders, but the mechanisms by which bacteria influence lipid storage in their host are unknown. To reduce the complexity of the relationship between gut microbiota and the host, () has been chosen as a model organism to study interspecies interaction.
View Article and Find Full Text PDFThe intracellular level of fatty aldehydes is tightly regulated by aldehyde dehydrogenases to minimize the formation of toxic lipid and protein adducts. Importantly, the dysregulation of aldehyde dehydrogenases has been implicated in neurologic disorder and cancer in humans. However, cellular responses to unresolved, elevated fatty aldehyde levels are poorly understood.
View Article and Find Full Text PDFPhysical contact between organelles are widespread, in part to facilitate the shuttling of protein and lipid cargoes for cellular homeostasis. How do protein-protein and protein-lipid interactions shape organelle subdomains that constitute contact sites? The endoplasmic reticulum (ER) forms extensive contacts with multiple organelles, including lipid droplets (LDs) that are central to cellular fat storage and mobilization. Here, we focus on ER-LD contacts that are highlighted by the conserved protein seipin, which promotes LD biogenesis and expansion.
View Article and Find Full Text PDFExogenous metabolites from microbial and dietary origins have profound effects on host metabolism. Here, we report that a sub-population of lipid droplets (LDs), which are conserved organelles for fat storage, is defined by metabolite-modulated targeting of the C. elegans seipin ortholog, SEIP-1.
View Article and Find Full Text PDFQuantitative methods to precisely measure cellular states in vivo have become increasingly important and desirable in modern biology. Recently, stimulated Raman scattering (SRS) microscopy has emerged as a powerful tool to visualize small biological molecules tagged with alkyne (C≡C) or carbon-deuterium (C-D) bonds in the cell-silent region. In this study, we developed a technique based on SRS microscopy of vibrational tags for quantitative imaging of lipid synthesis and lipolysis in live animals.
View Article and Find Full Text PDFThe primary goal of this study is to demonstrate that stimulated Raman scattering (SRS) as a new imaging modality can be integrated into a femtosecond (fs) nonlinear optical (NLO) microscope system. The fs sources of high pulse peak power are routinely used in multimodal nonlinear microscopy to enable efficient excitation of multiple NLO signals. However, with fs excitations, the SRS imaging of subcellular lipid and vesicular structures encounters significant interference from proteins due to poor spectral resolution and a lack of chemical specificity, respectively.
View Article and Find Full Text PDFBiochim Biophys Acta
October 2015
The lipid droplet (LD) is a cellular organelle that stores neutral lipids in cells and has been linked with metabolic disorders. Caenorhabditis elegans has many characteristics which make it an excellent animal model for studying LDs. However, unlike in mammalian cells, no LD structure-like/resident proteins have been identified in C.
View Article and Find Full Text PDFRNAi is a potent mechanism for downregulating gene expression. Conserved RNAi pathway components are found in animals, plants, fungi, and other eukaryotes. In C.
View Article and Find Full Text PDFMethods Cell Biol
May 2014
The powerful forward and reverse genetic tools, and emerging sets of biochemical assays for fat metabolites, make Caenorhabditis elegans an attractive model organism for elucidating conserved mechanisms in fat storage. The ability to observe lipid droplets in live animals at single cell resolution offers a unique advantage for studying cellular fat storage in vivo. In this chapter, we describe transgenic technologies for expressing fluorescent lipid droplet marker proteins at near-physiological levels.
View Article and Find Full Text PDFDirect observation of developmental and physiological changes in certain model organisms over time has been technically challenging. In the model organism Caenorhabditis elegans, these studies require frequent or continuous imaging at physiologically benign conditions. However, standard methods use anaesthetics, glue, or microbeads, which prevent animals from feeding during the experiment.
View Article and Find Full Text PDFLipid droplets (LDs) are the major fat storage organelles in eukaryotic cells, but how their size is regulated is unknown. Using genetic screens in C. elegans for LD morphology defects in intestinal cells, we found that mutations in atlastin, a GTPase required for homotypic fusion of endoplasmic reticulum (ER) membranes, cause not only ER morphology defects, but also a reduction in LD size.
View Article and Find Full Text PDFAt the subcellular level, fat storage is confined to the evolutionarily conserved compartments termed lipid droplets (LDs), which are closely associated with the endoplasmic reticulum (ER). However, the molecular mechanisms that enable ER-LD interaction and facilitate neutral lipid loading into LDs are poorly understood. In this paper, we present evidence that FATP1/acyl-CoA synthetase and DGAT2/diacylglycerol acyltransferase are components of a triglyceride synthesis complex that facilitates LD expansion.
View Article and Find Full Text PDFThe molecular mechanisms for target mRNA degradation in Caenorhabditis elegans undergoing RNAi are not fully understood. Using a combination of genetic, proteomic, and biochemical approaches, we report a divergent RDE-10/RDE-11 complex that is required for RNAi in C. elegans.
View Article and Find Full Text PDFLipid droplets are evolutionarily conserved organelles where cellular fat storage and mobilization are exquisitely regulated. Recent studies have defined lipid droplets in C. elegans and explored how they are regulated by genetic and dietary factors.
View Article and Find Full Text PDFElevation of the second messenger cGMP by nitric oxide (NO) activates the cGMP-dependent protein kinase PKG, which is key in regulating cardiovascular, intestinal, and neuronal functions in mammals. The NO-cGMP-PKG signaling pathway is also a major therapeutic target for cardiovascular and male reproductive diseases. Despite widespread effects of PKG activation, few molecular targets of PKG are known.
View Article and Find Full Text PDFBackground: Lipid droplets are a class of eukaryotic cell organelles for storage of neutral fat such as triacylglycerol (TAG) and cholesterol ester (CE). We and others have recently reported that lysosome-related organelles (LROs) are not fat storage structures in the nematode C. elegans.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2010
Dietary fat accumulates in lipid droplets or endolysosomal compartments that undergo selective expansion under normal or pathophysiological conditions. We find that genetic defects in a peroxisomal beta-oxidation pathway cause size expansion in lipid droplets that are distinct from the lysosome-related organelles in Caenorhabditis elegans. Expansion of lipid droplets is accompanied by an increase in triglycerides (TAG) that are resistant to fasting- or TAG lipase-triggered lipolysis.
View Article and Find Full Text PDFTo sense its population density and to trigger entry into the stress-resistant dauer larval stage, Caenorhabditis elegans uses the dauer pheromone, which consists of ascaroside derivatives with short, fatty acid-like side chains. Although the dauer pheromone has been studied for 25 years, its biosynthesis is completely uncharacterized. The daf-22 mutant is the only known mutant defective in dauer pheromone production.
View Article and Find Full Text PDFTubby mice and individuals with Bardet-Biedl syndrome have defects in ciliated neuron function and obesity, suggesting an as-yet unknown metabolic signaling axis from ciliated neurons to fat storage tissues. Here we show coordinate regulation of Caenorhabditis elegans fat storage by orthologues of these genes acting in ciliated neurons and by a 3-ketoacyl-coA thiolase (encoded by kat-1) that acts in fat storage tissue. A genetic screen for markedly enhanced fat storage in tub-1 mutants led to the isolation only of kat-1 alleles, which impair fatty acid beta-oxidation.
View Article and Find Full Text PDFCilia and flagella are widespread eukaryotic subcellular components that are conserved from green algae to mammals. In different organisms they function in cell motility, movement of extracellular fluids and sensory reception. While the function and structural description of cilia and flagella are well established, there are many questions that remain unanswered.
View Article and Find Full Text PDFParallel pathways control C. elegans reproductive development in response to environmental cues. Attenuation of daf-2 insulin-like or daf-7 TGFbeta-like signaling pathways cause developmental arrest at the stress resistant and long-lived dauer stage.
View Article and Find Full Text PDF