The pH-induced conformational change of influenza virus hemagglutinin (HA) has been investigated by calculating the change of electrostatic energy of the fragment of HA2 upon pH change. The average charge and electrostatic free energy are calculated as a function of pH for the fusion peptide (residues 1-20 of HA2) and the polypeptide of residues 54-77 of HA2 by using the finite difference Poisson-Boltzmann method. It is found that as pH decreases from 8 to 5, the electrostatic free energy of the fusogenic state is lowered by approximately 2 kcal/mol and the fusogenic state is less ionized compared to that of the native state for both polypeptides.
View Article and Find Full Text PDFDenaturant-induced unfolding of protein is simulated by using a Monte Carlo simulation with a lattice model for protein and denaturant. Following the binding theory for denaturant-induced unfolding, the denaturant molecules are modeled to interact with protein by nearest-neighbor interactions. By analyzing the conformational states on the unfolding pathway of protein, the denaturant-induced unfolding pathway is compared with the temperature-induced unfolding pathway under the same condition; that is, the free energies of unfolding under two different pathways are equal.
View Article and Find Full Text PDFWe have compared force-induced unfolding with traditional unfolding methods using apomyoglobin as a model protein. Using molecular dynamics simulation, we have investigated the structural stability as a function of the degree of mechanical perturbation. Both anisotropic perturbation by stretching two terminal atoms and isotropic perturbation by increasing the radius of gyration of the protein show the same key event of force-induced unfolding.
View Article and Find Full Text PDF