Publications by authors named "Ho Seok Park"

Sodium metal anodes (SMA), featuring high energy content, low electrochemical potential and easy availability, are a compelling option for sustainable energy storage. However, notorious sodium dendrite and unstable solid-electrolyte interface (SEI) have largely retarded their widespread implantation. Herein, porous amorphous carbon nanofiber embedded with Bi nanoparticles in nanopores (Bi@NC) was rationally designed as a 3D host for SMA.

View Article and Find Full Text PDF

In oxygen evolution reaction (OER), the participation of lattice oxygen can break the limitation of adsorption evolution mechanism, but the activation of lattice oxygen remains a critical challenge. Herein, a surface fluorinated highly active 2D/2D FeNi layered double hydroxide/MXene (F-LDH/MX) is demonstrated, boosting OER with the enhanced lattice-oxygen-mediated path. The introduction of fluorine promotes the self-evolution of catalyst in an alkaline environment, even without an external current.

View Article and Find Full Text PDF

The strategic design of a heterostructure catalyst with a core-shell nanoarchitecture is imperative for enhancing the efficiency of the electrocatalytic hydrogen evolution reaction (HER). Herein, the core-shell catalyst comprising the rhenium disulfide nanosheets was vertically integrated onto a hollow nickel sulfide (NiS@ReS) via coprecipitation and hydrothermal treatment. The morphology involves the sulfurization of a nickel-based Prussian blue analogue, effectively mitigating the aggregation of ReS nanosheets and maximizing the exposed active sites.

View Article and Find Full Text PDF

The design of bimetallic metal-organic frameworks (MOFs) with a hierarchical structure is important to improve the electrocatalytic performance of catalysts due to their synergistic effect on different metal ions. In this work, the catalyst comprises bimetallic iron-nickel MOF-derived FeNi phosphides, intricately integrated with phosphorus-doped reduced graphene oxide architectures (FeNiP-C/P-rGA) through the hydrothermal and phosphating treatments. The hierarchical architecture of the catalyst is beneficial for exposing active sites and facilitating electron transfer.

View Article and Find Full Text PDF

The high-entropy silicon anodes are attractive for enhancing electronic and Li-ionic conductivity while mitigating volume effects for advanced Li-ion batteries (LIBs), but are plagued by the complicated elements screening process. Inspired by the resemblances in the structure between sphalerite and diamond, we have selected sphalerite-structured SiP with metallic conductivity as the parent phase for exploring the element screening of high-entropy silicon-based anodes. The inclusion of the Zn in the sphalerite structure is crucial for improving the structural stability and Li-storage capacity.

View Article and Find Full Text PDF

Charged natural chalcopyrite (CuFeS, Ncpy) was developed for a three-dimensional electrochemical nitrate reduction (3D ENORR) system with carbon fiber cloth cathode and Ti/IrO anode and Zn-NO battery. The 3D ENORR system with Ncpy particle electrodes (PEs) possessed superior nitrate removal of 95.6 % and N selectivity of 76 % with excellent reusability under a broad pH range of 2-13 involving heterogeneous and homogeneous radical mechanisms.

View Article and Find Full Text PDF

Intrinsic impediments, namely weak mechanical strength, low ionic conductivity, low electrochemical performance, and stability have largely inhibited beyond practical applications of hydrogels in electronic devices and remains as a significant challenge in the scientific world. Here, we report a biospecies-derived genomic DNA hybrid gel electrolyte with many synergistic effects, including robust mechanical properties (mechanical strength and elongation of 6.98 MPa and 997.

View Article and Find Full Text PDF

The development of a cost-competitive and efficient electrocatalyst is both attractive and challenging for hydrogen production by hydrogen evolution reaction (HER). Herein, a facile glycol reduction method to construct Ru nanoclusters coupled with hierarchical exfoliated-MXene/reduced graphene oxide architectures (Ru-E-MXene/rGA) is reported. The hierarchical structure, formed by the self-assembly of graphene oxides, can effectively prohibit the self-stacking of MXene nanosheets.

View Article and Find Full Text PDF

Doping Co atoms into Ru lattices can tune the electronic structure of active sites, and the conductive MXene can adjust the electrical conductivity of catalysts, which are both favorable for improving the electrocatalytic activity of the catalyst for water splitting. Here, ruthenium-cobalt bimetallic nanoalloys coupled with exfoliated Ti C T MXene (RuCo-Ti C T ) have been constructed by ice-templated and thermal activation. Due to the strong interaction between the RuCo nanoalloys and conductive MXene, RuCo-Ti C T not only exhibits an excellent hydrogen evolution reaction (HER) performance with a low overpotential and Tafel slope (60 mV, 34.

View Article and Find Full Text PDF

Herein, we demonstrate an inorganic-organic double network gel electrolyte consisting of a silica particle network and a poly-2-hydroxyethyl methacrylate network in which 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquids are confined. The as-synthesized double network ionogel electrolytes exhibited high ion conductivity of 3.8 to 12.

View Article and Find Full Text PDF

Lithium polymer batteries (LPBs) with a high energy density and safety are being actively studied for their use as an energy storage system. However, bottlenecks to their development include charge-transport resistance and poor interfacial contact. In this paper, we introduce carbon nanofiber (CNF) as a conductive additive and the optimization of porosity in the electrode by calendering to realize a high loading density LPB.

View Article and Find Full Text PDF

Si is considered as the promising anode materials for lithium-ion batteries (LIBs) owing to their high capacities of 4200 mAh g and natural abundancy. However, severe electrode pulverization and poor electronic and Li-ionic conductivities hinder their practical applications. To resolve the afore-mentioned problems, we first demonstrate a cation-mixed disordered lattice and unique Li storage mechanism of single-phase ternary GaSiP compound, where the liquid metallic Ga and highly reactive P are incorporated into Si through a ball milling method.

View Article and Find Full Text PDF

Recently, intercalation pseudocapacitance has received significant interest as an abnormal charge storage mechanism owing to the battery-like intercalation energy storage into the bulk electrodes and the fast charge storage kinetics of electrochemical capacitors. However, intercalation pseudocapacitance of molybdenum-based polyoxometalates (POMs) for high-performance Zn ion battery (ZIB) cathodes is yet to be exploited. Herein, we demonstrate the fast and reversible intercalation pseudocapacitance of vanadium-substituted Keggin-type molybdenum-based POMs (XPMoV), where H of HPMoV is replaced by X cations (X = Li, Na, K, or Rb).

View Article and Find Full Text PDF

Recently, anion storage materials have gained significant attention owing to the widened cell voltage and additional anion storing capacity for a large energy density. MXenes are considered as the emerging anion storing materials owing to their sufficient interlayer spacing, rich surface chemistries, tunable structures, remarkable electrochemical properties, and mechanical integrity. Herein, a comprehensive review on the anion storage of MXenes covering their anion storage mechanism and state-of-the-art chemical strategies for the improved anion storage performances is reported.

View Article and Find Full Text PDF

Potassium- and sodium-ion batteries (PIBs and SIBs) have great potential as the next-generation energy application owing to the natural abundance of K and Na. Antimony (Sb) is a suitable alloying-type anode for PIBs and SIBs due to its high theoretical capacity and proper operation voltage; yet, the severe volume variation remains a challenge. Herein, a preparation of N-doped carbon-wrapped Sb nanoparticles (L-Sb/NC) using pulsed laser ablation and polydopamine coating techniques, is reported.

View Article and Find Full Text PDF

Interface modulation of nickel phosphide (Ni P) to produce an optimal catalytic activation barrier has been considered a promising approach to enhance the hydrogen production activity via water splitting. Herein, heteronuclei-mediated in situ growth of hollow Ni P nanospheres on a surface defect-engineered titanium carbide (Ti C T ) MXene showing high electrochemical activity for the hydrogen evolution reaction (HER) is demonstrated. The heteronucleation drives intrinsic strain in hexagonal Ni P with an observable distortion at the Ni P@Ti C T MXene heterointerface, which leads to charge redistribution and improved charge transfer at the interface between the two components.

View Article and Find Full Text PDF

Transition bimetallic alloy-based catalysts are regarded as attractive alternatives for the oxygen evolution reaction (OER), attributed to their competitive economics, high conductivity and intrinsic properties. Herein, we prepared FeNi/C nanorods with largely improved catalytic OER activity by combining hydrothermal reaction and thermal annealing treatment. The temperature effect on the crystal structure and chemical composition of the FeNi/C nanorods was revealed, and the enhanced catalytic performance of FeNi/C with an annealing temperature of 400 °C was confirmed by several electrochemical tests.

View Article and Find Full Text PDF

For the practical use of synthetic hydrogels as artificial biological tissues, flexible electronics, and conductive membranes, achieving requirements for specific mechanical properties is one of the most prominent issues. Here, we demonstrate superstrong, superstiff, and conductive alginate hydrogels with densely interconnecting networks implemented via simple reconstructing processes, consisting of anisotropic densification of pre-gel and a subsequent ionic crosslinking with rehydration. The reconstructed hydrogel exhibits broad ranges of exceptional tensile strengths (8-57 MPa) and elastic moduli (94-1,290 MPa) depending on crosslinking ions.

View Article and Find Full Text PDF

A polymer-based nanofiber membrane with a high specific surface area, high porosity and abundant adsorption sites is demonstrated for selective trapping of radionuclides. The Prussian blue (PB)/poly(methyl methacrylate) (PMMA) nanofiber composites were successfully prepared through a one-step, single-nozzle electrospinning method. Various analytical techniques were used to examine the physical and chemical properties of PB nanoparticles and electrospun nanofibers.

View Article and Find Full Text PDF

Highly active and durable electrocatalysts are essential for producing hydrogen fuel through the hydrogen evolution reaction (HER). Here, a uniform deposition of Ru nanoparticles strongly interacting with oxygen-rich carbon nanotube architectures (Ru-OCNT) through ozonation and hydrothermal approaches has been designed. The hierarchical structure of Ru-OCNT is made by self-assembly of oxygen functionalities of OCNT.

View Article and Find Full Text PDF

Electrochemical capacitors charge and discharge more rapidly than batteries over longer cycles, but their practical applications remain limited due to their significantly lower energy densities. Pseudocapacitors and hybrid capacitors have been developed to extend Ragone plots to higher energy density values, but they are also limited by the insufficient breadth of options for electrode materials, which require materials that store alkali metal cations such as Li and Na. Herein, we report a comprehensive and systematic review of emerging anion storage materials for performance- and functionality-oriented applications in electrochemical and battery-capacitor hybrid devices.

View Article and Find Full Text PDF

With the development of microelectronic devices having miniaturized and integrated electronic components, an efficient thermal management system with lightweight materials, which have outstanding thermal conductivity and processability, is becoming increasingly important. Recently, the use of polymer-based thermal management systems has attracted much interest due to the intrinsic excellent properties of the polymer, such as the high flexibility, low cost, electrical insulation, and excellent processability. However, most polymers possess low thermal conductivity, which limits the thermal management applications of them.

View Article and Find Full Text PDF