Merozoite surface protein-1 (MSP-1), a major asexual blood stage antigen, and circumsporozoite protein (CSP), a component of sporozoites that includes a Plasmodium vivax B-cell epitope, are strong candidates for use in a malaria vaccine. A chimeric recombinant gene containing portions of both msp-1 and csp from P. vivax separated by Pro-Gly linker motif was generated.
View Article and Find Full Text PDFBackground: To develop a plant-based vaccine against Plasmodium vivax, two P. vivax candidate proteins were chosen. First, the merozoite surface protein-1 (MSP-1), a major asexual blood stage antigen that is currently considered a strong vaccine candidate.
View Article and Find Full Text PDFA family of calcium-dependent protein kinases (CDPKs) is a unique enzyme which plays crucial roles in intracellular calcium signaling in plants, algae, and protozoa. CDPKs of malaria parasites are known to be key regulators for stage-specific cellular responses to calcium, a widespread secondary messenger that controls the progression of the parasite. In our study, we identified a gene encoding Plasmodium vivax CDPK4 (PvCDPK4) and characterized its molecular property and cellular localization.
View Article and Find Full Text PDFThere has been a great increase of Plasmodium vivax incidences in the Republic of Korea and the genetic diversity of the parasite became more complex with the rapid dissemination of newly introduced genotypes. Surveillance of imported malaria is very important, but there is no good way to determine imported vs. internal cases.
View Article and Find Full Text PDFThe merozoite surface protein-1 (MSP-1) from Plasmodium vivax was evaluated as an oral vaccine candidate by cloning and expressing the interspecies conserved block 10 (ICB10) of the MSP-1 from a Korean isolate in Escherichia coli. The expressed fusion protein contained ICB10 and a maltose-binding protein (MBP), rPv54, has a molecular weight of approximately 54 kDa as determined by SDS-PAGE analysis. IgG against rPv54 was successfully produced in BALB/c mice by oral immunization and sustained for more than 4 months.
View Article and Find Full Text PDFReemerged Plasmodium vivax malaria in South Korea has not yet been eradicated despite continuous governmental efforts. It has rather become an endemic disease. Our study aimed to determine the genetic diversity in P.
View Article and Find Full Text PDFKorean J Parasitol
December 2009
Genotyping of Toxoplasma gondii has been performed in 23 PCR positive blood samples from stray cats in Korea. We used 2 separate PCR-restriction fragment length polymorphism (RFLP) patterns of SAG2 gene, amplifying the 5' and 3' ends of the locus. The results revealed that all samples belonged to the type I clonal lineage.
View Article and Find Full Text PDFArsenite is an environmental toxicant that is associated with vascular disease; however, the underlying mechanism of its toxicity has yet to be elucidated. Vascular stability appears to be tightly regulated by several vasoactive proteins produced by two adjacent vascular cells, endothelial cells (EC) and pericytes. The disruption of vascular stability may be involved in arsenite toxicity.
View Article and Find Full Text PDFWe investigated chamber-specific gene expression by isolating a 2.2-kb polymerase chain reaction product containing the 5'-flanking region of the zebrafish ventricular myosin heavy-chain gene (vmhc). Promoter analysis revealed that the fragment, consisting of nucleotides from -301 to +26, is sufficient for vmhc promoter activity.
View Article and Find Full Text PDFKorean J Parasitol
September 2008
Toxoplasma gondii is an obligate intracellular zoonotic protozoan with a worldwide distribution. It infects humans as well as a broad spectrum of vertebrate hosts. Cats and wild felidae play crucial roles in the epidemiology of toxoplasmosis.
View Article and Find Full Text PDFJ Microbiol Biotechnol
June 2008
Klebsiella oxytoca CCUG 15788 is resistant to Ni2+ at a concentration of 10 mM and grows in an inducible manner when exposed to lower concentrations of Ni2+. The complete genomic sequence of a 4.2-kb HindIII-digested fragment of this strain was determined from genomic DNA.
View Article and Find Full Text PDFOsteoporosis is a disease characterized by exaggerated loss of bone mass, with as much as 50 to 85% of the variation in bone mineral density (BMD) commonly accepted as being genetically determined. Although intensive studies have attempted to elucidate the genetic effects of polymorphisms on BMD and/or osteoporosis in several genes, the genes involved are still largely unknown. The possible associations of genetic variants in five-candidate genes (IL10, CCR3, MCP1, MCP2 and GC) with spinal BMD were investigated in Korean postmenopausal women (n = 370).
View Article and Find Full Text PDFThe structural genes for the nickel and cobalt resistance of the conjugative plasmid pEJH 501 of Hafnia alvei 5-5, contained on a SalI-EcoRI fragment of 4.8 kb, were cloned and sequenced. The DNA sequence included five genes in the following order: ncrA, ncrB, ncrC, ncrY, and ncrX.
View Article and Find Full Text PDFHuman transforming growth factor-beta1 (TGFB1) is a family of polypeptides that regulate cell growth, cell differentiation, and cell function as a multifunctional regulator of cellular activity. TGFB1 is produced by osteoblasts and stored in substantial amounts in the bone matrix, which is an important regulator of both skeletal development and homeostasis of bone metabolism. In the present study, we identified four new polymorphisms in TGFB1 and examined whether these polymorphisms are risk factors for osteoporosis.
View Article and Find Full Text PDFHafnia alvei 5-5, isolated from a soil-litter mixture underneath the canopy of the nickel-hyperaccumulating tree Sebertia acuminata (Sapotaceae) in New Caledonia, was found to be resistant to 30 mM Ni(2+) or 2 mM Co(2+). The 70-kb plasmid, pEJH 501, was transferred by conjugation to Escherichia coli, Serratia marcescens, and Klebsiella oxytoca. Transconjugant strains expressed inducible nickel resistance to between 5 and 17 mM Ni(2+), and cobalt resistance to 2 mM Co(2+).
View Article and Find Full Text PDF