Close vital signs monitoring is crucial for the clinical management of patients with dengue. We investigated performance of a non-invasive wearable utilising photoplethysmography (PPG), to provide real-time risk prediction in hospitalised individuals. We performed a prospective observational clinical study in Vietnam between January 2020 and October 2022: 153 patients were included in analyses, providing 1353 h of PPG data.
View Article and Find Full Text PDFGlycocalyx disruption and hyperinflammatory responses are implicated in the pathogenesis of dengue-associated vascular leak, however little is known about their association with clinical outcomes of patients with dengue shock syndrome (DSS). We investigated the association of vascular and inflammatory biomarkers with clinical outcomes and their correlations with clinical markers of vascular leakage. We performed a prospective cohort study in Viet Nam.
View Article and Find Full Text PDFBackground: Dengue epidemics impose considerable strain on healthcare resources. Real-time continuous and non-invasive monitoring of patients admitted to the hospital could lead to improved care and outcomes. We evaluated the performance of a commercially available wearable (SmartCare) utilising photoplethysmography (PPG) to stratify clinical risk for a cohort of hospitalised patients with dengue in Vietnam.
View Article and Find Full Text PDFBull World Health Organ
July 2023
Problem: Direct application of digital health technologies from high-income settings to low- and middle-income countries may be inappropriate due to challenges around data availability, implementation and regulation. Hence different approaches are needed.
Approach: Within the Viet Nam ICU Translational Applications Laboratory project, since 2018 we have been developing a wearable device for individual patient monitoring and a clinical assessment tool to improve dengue disease management.
Background: Identifying patients at risk of dengue shock syndrome (DSS) is vital for effective healthcare delivery. This can be challenging in endemic settings because of high caseloads and limited resources. Machine learning models trained using clinical data could support decision-making in this context.
View Article and Find Full Text PDFBackground: Dengue is a common viral illness and severe disease results in life-threatening complications. Healthcare services in low- and middle-income countries treat the majority of dengue cases worldwide. However, the clinical decision-making processes which result in effective treatment are poorly characterised within this setting.
View Article and Find Full Text PDFBackground: Dengue is a neglected tropical disease, for which no therapeutic agents have shown clinical efficacy to date. Clinical trials have used strikingly variable clinical endpoints, which hampers reproducibility and comparability of findings. We investigated a delta modified Sequential Organ Failure Assessment (delta mSOFA) score as a uniform composite clinical endpoint for use in clinical trials investigating therapeutics for moderate and severe dengue.
View Article and Find Full Text PDFBackground: Symptomatic dengue infection can result in a life-threatening shock syndrome and timely diagnosis is essential. Point-of-care tests for non-structural protein 1 and IgM are used widely but performance can be limited. We developed a supervised machine learning model to predict whether patients with acute febrile illnesses had a diagnosis of dengue or other febrile illnesses (OFI).
View Article and Find Full Text PDFDiphtheria is a life-threatening, vaccine-preventable disease caused by toxigenic Corynebacterium bacterial species that continues to cause substantial disease and death worldwide, particularly in vulnerable populations. Further outbreaks of vaccine-preventable diseases are forecast because of health service disruptions caused by the coronavirus disease pandemic. Diphtheria causes a spectrum of clinical disease, ranging from cutaneous forms to severe respiratory infections with systemic complications, including cardiac and neurologic.
View Article and Find Full Text PDFDengue is a disease of major global importance. While most symptomatic infections are mild, a small proportion of patients progress to severe disease with risk of hypovolaemic shock, organ dysfunction and death. In the absence of effective antiviral or disease modifying drugs, clinical management is solely reliant on supportive measures.
View Article and Find Full Text PDFThe microcirculation comprising of arterioles, capillaries and post-capillary venules is the terminal vascular network of the systemic circulation. Microvascular homeostasis, comprising of a balance between vasoconstriction, vasodilation and endothelial permeability in healthy states, regulates tissue perfusion. In severe infections, systemic inflammation occurs irrespective of the infecting microorganism(s), resulting in microcirculatory dysregulation and dysfunction, which impairs tissue perfusion and often precedes end-organ failure.
View Article and Find Full Text PDFOptimal management of infectious diseases is guided by up-to-date information at the individual and public health levels. For infections of global importance, including emerging pandemics such as COVID-19 or prevalent endemic diseases such as dengue, identifying patients at risk of severe disease and clinical deterioration can be challenging, considering that the majority present with a mild illness. In our article, we describe the use of wearable technology for continuous physiological monitoring in healthcare settings.
View Article and Find Full Text PDF