Publications by authors named "Ho Nhu Y Nguyen"

One of the remaining challenges of bringing photoacoustic imaging to clinics is the occurrence of reflection artifacts. Previously, we proposed a method using multi-wavelength excitation to identify and remove the RAs. However, this method requires at least 3 wavelengths.

View Article and Find Full Text PDF

Research on photoacoustic imaging (PAI) using a handheld integrated photoacoustic probe has been a recent focus of clinical translation of this imaging technique. One of the remaining challenges is the occurrence of out-of-plane artifacts (OPAs) in such a probe. Previously, we proposed a method to identify and remove OPAs by axially displacing the transducer array.

View Article and Find Full Text PDF

The occurrence of artifacts is a major challenge in photoacoustic imaging. The artifacts negatively affect the quality and reliability of the images. An approach using multi-wavelength excitation has previously been reported for in-plane artifact identification.

View Article and Find Full Text PDF

Photoacoustic imaging has been a focus of research for clinical applications owing to its ability for deep visualization with optical absorption contrast. However, there are various technical challenges remaining for this technique to find its place in clinics. One of the challenges is the occurrence of reflection artifacts.

View Article and Find Full Text PDF

The deep imaging capability and optical absorption contrast offered by photoacoustic imaging promote the use of this technology in clinical applications. By exploiting the optical absorption properties of endogenous chromophores such as hemoglobin and lipid, molecular information at a depth of a few centimeters can be unveiled. This information shows promise to reveal lesions indicating early stage of various human diseases, such as cancer and atherosclerosis.

View Article and Find Full Text PDF