The paired nickases approach, which utilizes clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated proteins (Cas) nickase and dual guide RNA, has the advantage of reducing off-target effects by being able to double the target sequence. In this study, our research utilized the Cas9-NG nickase variant to minimize PAM sequence constraints, enabling the generation of paired nicks at desired genomic loci. We performed a systematic investigation into the formation sites for double nicks and the design of donor DNA within a bacterial model system.
View Article and Find Full Text PDFMicrobial genome editing can be achieved by donor DNA-directed mutagenesis and CRISPR-Cas12a-mediated negative selection. Single-nucleotide-level genome editing enables the manipulation of microbial cells exactly as designed. Here, we describe single-nucleotide substitutions/indels in the target DNA of E.
View Article and Find Full Text PDFMultiplex genome editing with CRISPR-Cas9 offers a cost-effective solution for time and labor savings. However, achieving high accuracy remains a challenge. In an model system, we achieved highly efficient single-nucleotide level simultaneous editing of the and genes using the 5'-end-truncated single-molecular guide RNA (sgRNA) method.
View Article and Find Full Text PDFWith developments in synthetic biology, "engineering biology" has emerged through standardization and platformization based on hierarchical, orthogonal, and modularized biological systems. Genome engineering is necessary to manufacture and design synthetic cells with desired functions by using bioparts obtained from sequence databases. Among various tools, the CRISPR-Cas system is modularly composed of guide RNA and Cas nuclease; therefore, it is convenient for editing the genome freely.
View Article and Find Full Text PDFThe CRISPR-Cas system has been used as a convenient tool for genome editing because the nuclease that cuts the target DNA and the guide RNA that recognizes the target are separated into modules. Cas12f1, which has a smaller size than that of other Cas nucleases, is easily loaded into vectors and is emerging as a new genome editing tool. In this study, AsCas12f1 was used to negatively select only cells obtained by oligonucleotide-directed genome editing.
View Article and Find Full Text PDFEnterobacterial phage λ is a temperate phage that infects and has a lytic-lysogenic life cycle. CI, a λ repressor, regulates the expression of lytic transcripts and acts as a major genetic switch that determines the lysogenic state. To manipulate the genome of phage λ, the CRISPR-Cas9 genome editing system was constructed in lysogenic MG1655 cells.
View Article and Find Full Text PDFMismatch tolerance, a cause of the off-target effect, impedes accurate genome editing with the CRISPR/Cas system. Herein, we observed that oligonucleotide-directed single-base substitutions could be rarely introduced in the microbial genome using CRISPR/Cpf1-mediated negative selection. Because crRNAs have the ability to recognize and discriminate among specific target DNA sequences, we systematically compared the effects of modified crRNAs with 3'-end nucleotide truncations and a single mismatch on the genomic cleavage activity of FnCpf1 in.
View Article and Find Full Text PDFPrevious studies have modified microbial genomes by introducing gene cassettes containing selectable markers and homologous DNA fragments. However, this requires several steps including homologous recombination and excision of unnecessary DNA regions, such as selectable markers from the modified genome. Further, genomic manipulation often leaves scars and traces that interfere with downstream iterative genome engineering.
View Article and Find Full Text PDFThe CRISPR/Cas9 system has recently emerged as a useful gene-specific editing tool. However, this approach occasionally results in the digestion of both the DNA target and similar DNA sequences due to mismatch tolerance, which remains a significant drawback of current genome editing technologies. However, our study determined that even single-base mismatches between the target DNA and 5'-truncated sgRNAs inhibited target recognition.
View Article and Find Full Text PDFGenome editing has been revolutionized by the CRISPR-Cas9 system. CRISPR-Cas9 is composed of single-molecular guide RNA (sgRNA) and a proteinaceous Cas9 nuclease, which recognizes a specific target sequence and a protospacer adjacent motif (PAM) sequence and, subsequently, cleaves the targeted DNA sequence. This CRISPR-Cas9 system has been used as an efficient negative-selection tool to cleave unedited or unchanged target DNAs during site-specific mutagenesis and, consequently, obtain microbial cells with desired mutations.
View Article and Find Full Text PDFMonocyte adhesion to vascular endothelium is an initial step in atherogenesis. To quantify this, we incubated monocytes with cultured endothelial cells, and quantified the adhered live monocytes using a colorimetric assay. Endothelium activated with lipopolysaccharide attracted monocytes in a dose-dependent manner and the adhesion was attenuated with post-treatments with L-ascorbic acid (53%), alpha- (40%) and gamma-tocopherol (39%), resveratrol (39%), and Lithospermum erythrorhizon root extract (45%).
View Article and Find Full Text PDFTo investigate the effect of size-excluded fraction of non-animal protein hydrolysate on growth, viability and longevity of Chinese hamster ovary (CHO) cells, several commercially available protein hydrolysates were evaluated as a feed supplement to chemically-defined protein-free suspension culture. Soy protein hydrolysates showed better supporting capability for cell growth and viability than the other types of hydrolysates. Maximal cell growth was not affected greatly by size exclusion of some soy hydrolysates such as bacto soytone and soy hydrolysates.
View Article and Find Full Text PDFMethionine (Met) residues in proteins are susceptible to oxidation. The resulting methionine sulfoxide can be reduced back to methionine by methionine sulfoxide-S-reductase (MsrA). The MsrA gene, isolated from Caenorhabditis elegans, was cloned and expressed in Escherichia coli.
View Article and Find Full Text PDF