Publications by authors named "Hiwa Malen"

Correct protein compartmentalization is a key step for molecular function and cell viability, and this is especially true for membrane and externalized proteins of bacteria. Recent proteomic reports of Bacillus subtilis have shown that many proteins with Sec-like signal peptides and absence of a transmembrane helix domain are still observed in membrane-enriched fractions, but further evidence about signal peptide cleavage or soluble protein contamination is still needed. Here we report a proteomic screening of identified peptides in culture filtrate, membrane fraction and whole cell lysate of Mycobacterium tuberculosis.

View Article and Find Full Text PDF

Background: The potential causes for variation in virulence between distinct M. tuberculosis strains are still not fully known. However, differences in protein expression are probably an important factor.

View Article and Find Full Text PDF

Precise annotation of genes or open reading frames is still a difficult task that results in divergence even for data generated from the same genomic sequence. This has an impact in further proteomic studies, and also compromises the characterization of clinical isolates with many specific genetic variations that may not be represented in the selected database. We recently developed software called multistrain mass spectrometry prokaryotic database builder (MSMSpdbb) that can merge protein databases from several sources and be applied on any prokaryotic organism, in a proteomic-friendly approach.

View Article and Find Full Text PDF

Background: Membrane- and membrane-associated proteins are important for the pathogenicity of bacteria. We have analysed the content of these proteins in virulent Mycobacterium tuberculosis H37Rv using Triton X-114 detergent-phase separation for extraction of lipophilic proteins, followed by their identification with high resolution mass spectrometry.

Results: In total, 1417 different proteins were identified.

View Article and Find Full Text PDF

Secreted proteins play an important part in the pathogenicity of Mycobacterium tuberculosis, and are the primary source of vaccine and diagnostic candidates. A majority of these proteins are exported via the signal peptidase I-dependent pathway, and have a signal peptide that is cleaved off during the secretion process. Sequence similarities within signal peptides have spurred the development of several algorithms for predicting their presence as well as the respective cleavage sites.

View Article and Find Full Text PDF

Background: The hNaa10p (hArd1) protein is the catalytic subunit of the human NatA Nalpha-terminal acetyltransferase complex. The NatA complex is associated with ribosomes and cotranslationally acetylates human proteins with Ser-, Ala-, Thr-, Val-, and Gly- N-termini after the initial Met- has been removed. In the flexible C-terminal tail of hNaa10p, there are several potential phosphorylation sites that might serve as points of regulation.

View Article and Find Full Text PDF

Background: While the genomic annotations of diverse lineages of the Mycobacterium tuberculosis complex are available, divergences between gene prediction methods are still a challenge for unbiased protein dataset generation. M. tuberculosis gene annotation is an example, where the most used datasets from two independent institutions (Sanger Institute and Institute of Genomic Research-TIGR) differ up to 12% in the number of annotated open reading frames, and 46% of the genes contained in both annotations have different start codons.

View Article and Find Full Text PDF

Tuberculosis is an ancient disease that remains a significant global health problem. Because many membrane and membrane-associated proteins of this pathogen represent potential targets for drugs, diagnostic probes or vaccine components, we have analysed Mycobacterium bovis, bacillus Calmette-Guérin (BCG) substrain Moreau, using Triton X-114 for extraction of lipophilic proteins, followed by identification with LC coupled MS/MS. We identified 351 different proteins in total, and 103 (29%) were predicted as integral membrane proteins with at least one predicted transmembrane region and another 84 (23.

View Article and Find Full Text PDF

Proteins secreted by Mycobacterium tuberculosis play an essential role in the pathogenesis of tuberculosis. The culture filtrates of M. tuberculosis H37Rv made by Sadamu Nagai (Japan), are considerably enriched for secreted proteins compared to other culture filtrates.

View Article and Find Full Text PDF