Publications by authors named "Hiura H"

Article Synopsis
  • Scientists discovered that human embryonic stem cells can change into a type of cell that helps form the placenta, but they need to be in a special state to do this.
  • * They found that a specific set of genes on chromosome 19, called C19MC, is important for this change and is active in one type of stem cell but not in another.
  • * By using a technique called CRISPR, they showed that turning on these genes in the other type of stem cell allows it to become the placenta-forming cells.
View Article and Find Full Text PDF

Adrenomedullin (ADM), a member of the calcitonin family of peptides, is a potent vasodilator and was shown to have the ability to modulate bone metabolism. We have previously found a unique cell surface antigen (Kat1 antigen) expressed in rat osteoclasts, which is involved in the functional regulation of the calcitonin receptor (CTR). Cross-linking of cell surface Kat1 antigen with anti-Kat1 antigen monoclonal antibody (mAbKat1) stimulated osteoclast formation only under conditions suppressed by calcitonin.

View Article and Find Full Text PDF

Osteoclasts are multinucleated cells formed through specific recognition and fusion of mononuclear osteoclast precursors derived from hematopoietic stem cells. Detailed cellular events concerning cell fusion in osteoclast differentiation remain ambiguous. Tunneling nanotubes (TNTs), actin-based membrane structures, play an important role in intercellular communication between cells.

View Article and Find Full Text PDF

Exposure to environmental factors during fetal development may lead to epigenomic modifications in fetal germ cells, altering gene expression and promoting diseases in successive generations. In mouse, maternal exposure to di(2-ethylhexyl) phthalate (DEHP) is known to induce defects in spermatogenesis in successive generations, but the mechanism(s) of impaired spermatogenesis are unclear. Here, we showed that maternal DEHP exposure results in DNA hypermethylation of promoters of spermatogenesis-related genes in fetal testicular germ cells in F1 mice, and hypermethylation of , and , which are crucial for spermatogenesis, persisted from fetal testicular cells to adult spermatogonia, resulting in the downregulation of expression of these genes.

View Article and Find Full Text PDF

The chromatin protein positive coactivator 4 (PC4) has multiple functions, including chromatin compaction. However, its role in immune cells is largely unknown. We show that PC4 orchestrates chromatin structure and gene expression in mature B cells.

View Article and Find Full Text PDF

The effects of vitamin K (VK) on immune cells in ruminants are yet to be fully investigated. The objective of this study was to examine the effects of VK on peripheral blood mononuclear cells (PBMC) in Holstein dairy cows. A cell proliferation assay was performed to evaluate the effect of menaquinone-4 (MK-4, the biologically active form of VK) on immune response of PBMC.

View Article and Find Full Text PDF

Bone remodeling is a continuous process characterized by highly coordinated cell-cell interactions in distinct multi-cellular units. Osteoclasts, which are specialized bone resorbing cells, play a central role in bone remodeling. Although the RANKL/RANK axis determines the gross number of osteoclasts present in bone tissue, detailed molecular events regulating bone remodeling related to osteoclast recruitment, initiation of bone remodeling, and coupling of bone resorption and bone formation are still ambiguous.

View Article and Find Full Text PDF

Background: Human-assisted reproductive technologies (ART) are a widely accepted treatment for infertile couples. At the same time, many studies have suggested the correlation between ART and increased incidences of normally rare imprinting disorders such as Beckwith-Wiedemann syndrome (BWS), Angelman syndrome (AS), Prader-Willi syndrome (PWS), and Silver-Russell syndrome (SRS). Major methylation dynamics take place during cell development and the preimplantation stages of embryonic development.

View Article and Find Full Text PDF
Article Synopsis
  • Trophoblast cells are crucial for the interaction between a developing fetus and the mother, and while mouse trophoblast stem cells have been successfully created for study, creating human equivalents has been challenging.
  • Recent research shows that stimulating specific pathways and inhibiting others allows for the long-term culture of human villous cytotrophoblast cells, revealing their potential to develop into various trophoblast lineages.
  • The newly established cell lines derived from both human villous cytotrophoblasts and blastocysts closely resemble primary trophoblast cells and are identified as human trophoblast stem cells, offering a valuable resource for investigating human pregnancy development and functioning.
View Article and Find Full Text PDF

Background: Frozen-thawed embryo transfer (FET) is increasingly available for the improvement of the success rate of assisted reproductive technologies other than fresh embryo transfer (ET). There have been numerous findings that FET provides better obstetric and perinatal outcomes. However, the birth weight of infants conceived using FET is heavier than that of those conceived via ET.

View Article and Find Full Text PDF

Static convergence and accommodation responses were measured by comparing integral photography images, binocular stereoscopic images, and real objects in a measurement range from 450 to 900 mm. The experimental results were evaluated with a multiple comparison test. It was found that six of the ten observers did not have an accommodation-convergence conflict in viewing integral photography in the range.

View Article and Find Full Text PDF

Disturbingly, the number of patients with oligozoospermia (low sperm count) has been gradually increasing in industrialized countries. Epigenetic alterations are believed to be involved in this condition. Recent studies have clarified that intrinsic and extrinsic factors can induce epigenetic transgenerational phenotypes through apparent reprogramming of the male germ line.

View Article and Find Full Text PDF

DNA methylation plays important roles in the production and functioning of spermatozoa. Recent studies have suggested that DNA methylation patterns in spermatozoa can change with age, but the regions susceptible to age-related methylation changes remain to be fully elucidated. In this study, we conducted genome-scale DNA methylation profiling of spermatozoa obtained from C57BL/6N mice at 8 weeks (8w), 18 weeks (18w) and 17 months of age (17m).

View Article and Find Full Text PDF
Article Synopsis
  • DNA methylation is significantly reprogrammed after fertilization, leading to similar methylation patterns in parental genomes post-implantation, with exceptions at certain germline differentially methylated regions (gDMRs).
  • Researchers discovered that a significant portion of transient maternally methylated gDMRs in human blastocysts retains their maternal methylation in trophoblast cells from placentas, contrary to previous findings.
  • The study suggests that some placenta-specific mDMRs are linked to the expression of imprinted genes and reveals variability in genomic imprinting among mammals, underlining the importance of understanding DNA methylation in relation to placental development and developmental disorders.
View Article and Find Full Text PDF

From the high vibrational dipolar strength offered by molecular liquids, we demonstrate that a molecular vibration can be ultrastrongly coupled to multiple IR cavity modes, with Rabi splittings reaching 24% of the vibration frequencies. As a proof of the ultrastrong coupling regime, our experimental data unambiguously reveal the contributions to the polaritonic dynamics coming from the antiresonant terms in the interaction energy and from the dipolar self-energy of the molecular vibrations themselves. In particular, we measure the opening of a genuine vibrational polaritonic band gap of ca.

View Article and Find Full Text PDF

Small leucine-rich repeat proteoglycan (SLRP) family proteins play important roles in a number of biological events. Here, we demonstrate that the SLRP family member Asporin (ASPN) plays a crucial role in the early stages of eye development in Xenopus embryos. During embryogenesis, ASPN is broadly expressed in the neuroectoderm of the embryo.

View Article and Find Full Text PDF

The most common form of male infertility is a low sperm count, known as oligozoospermia. Studies suggest that oligozoospermia is associated with epigenetic alterations. Epigenetic alterations in sperm, which may arise due to the exposure of gametes to environmental factors or those that pre-exist in the sperm of infertile individuals, may contribute to the increased incidence of normally rare imprinting disorders in babies conceived after assisted reproductive technology using the sperm of infertile men.

View Article and Find Full Text PDF

Ground-state molecular vibrations can be hybridized through strong coupling with the vacuum field of a cavity optical mode in the infrared region, leading to the formation of two new coherent vibro-polariton states. The spontaneous Raman scattering from such hybridized light-matter states was studied, showing that the collective Rabi splitting occurs at the level of a single selected bond. Moreover, the coherent nature of the vibro-polariton states boosts the Raman scattering cross-section by two to three orders of magnitude, revealing a new enhancement mechanism as a result of vibrational strong coupling.

View Article and Find Full Text PDF

DNA methylation is globally reprogrammed during mammalian preimplantation development, which is critical for normal development. Recent reduced representation bisulfite sequencing (RRBS) studies suggest that the methylome dynamics are essentially conserved between human and mouse early embryos. RRBS is known to cover 5-10% of all genomic CpGs, favoring those contained within CpG-rich regions.

View Article and Find Full Text PDF

There has been an increase in incidence reports of rare imprinting disorders associated with assisted reproductive technology (ART). ART, including in vitro fertilization and intracytoplasmic sperm injections, is an important treatment for infertile people of reproductive age and increasingly produces children. The identification of epigenetic changes at imprinted loci in ART infants has led to the suggestion that ART techniques themselves may predispose embryos to acquire imprinting errors and diseases.

View Article and Find Full Text PDF

We have developed a compact integral three-dimensional (3D) imaging equipment that positions the lens array and image sensor in close proximity to each other. In the conventional scheme, a camera lens is used to project the elemental images generated by the lens array onto the image sensor. In contrast, the imaging equipment presented here combines the lens array and image sensor into one unit and makes no use of a camera lens.

View Article and Find Full Text PDF

There have been increased incident reports of rare imprinting disorders associated with assisted reproductive technology (ART). ART is an important treatment for infertile people of reproductive age and is increasingly common. The identification of epigenetic changes at imprinted loci in ART infants has led to the suggestion that the techniques themselves may predispose embryos to acquisition of imprinting errors and disease.

View Article and Find Full Text PDF

Background: hiPSCs are generated through epigenetic reprogramming of somatic tissue. Genomic imprinting is an epigenetic phenomenon through which monoallelic gene expression is regulated in a parent-of-origin-specific manner. Reprogramming relies on the successful erasure of marks of differentiation while maintaining those required for genomic imprinting.

View Article and Find Full Text PDF

Integral three-dimensional (3D) television based on integral imaging requires huge amounts of information. Previously, we constructed an Integral 3D television using Super Hi-Vision (SHV) technology, with 7680 pixels horizontally and 4320 pixels vertically. We report on improved image quality through the development of video system with an equivalent of 8000 scan lines for use with Integral 3D television.

View Article and Find Full Text PDF