Publications by authors named "Hiu-Wa Cheng"

Damage to the hyaline cartilage of the joint surface and osteochondral fractures are key factors leading to the development of osteoarthritis in racehorses, representing a significant cause of racehorse retirement. To tissue-engineer an osteochondral unit that is suitable for joint repair, incorporation of a zone of calcified cartilage should be considered so as to mimic itscounterpart. To date, equine mesenchymal stem cells (eMSCs) have been reported to have multilineage differentiation potential.

View Article and Find Full Text PDF

Intervertebral disc degeneration is an important clinical problem but existing treatments have significant drawbacks. The ability to bioengineer the entire spinal motion segment (SMS) offers hope for better motion preservation strategies but is extremely challenging. Here, fabrication of a multicomponent SMS construct with complex hierarchical organization from mesenchymal stem cells and collagen-based biomaterials, using a module-based integrative approach, is reported.

View Article and Find Full Text PDF

Creating biological interfaces between mechanically dissimilar tissues is a key challenge in complex tissue engineering. An osteochondral interface is essential in preventing mechanical failure and maintaining normal function of cartilage. Despite tremendous efforts in developing osteochondral plugs, formation of the osteochondral interface with proper zonal organization has not yet been reported.

View Article and Find Full Text PDF

Extracellular matrix (ECM) partially constitutes the stem cell niche. Reconstituting the ECM niche in a three-dimensional (3D) configuration will significantly enhance our understanding of how stem cells interact with and respond to the ECM niche. In this study, we aimed to reconstitute a glycosaminoglycan (GAG)-rich ECM using a microencapsulation technology, produce acellular matrix using a decellularization technique, and investigate the effect of acellular matrix on stem cell fate by repopulating the matrix with human mesenchymal stem cells (hMSCs).

View Article and Find Full Text PDF