Publications by authors named "Hiu Yin Lao"

Foodborne pathogens, particularly antimicrobial-resistant (AMR) bacteria, remain a significant threat to global health. Given the limitations of conventional culture-based approaches, which are limited in scope and time-consuming, metagenomic sequencing of food products emerges as a promising solution. This method provides a fast and comprehensive way to detect the presence of pathogenic microbes and antimicrobial resistance genes (ARGs).

View Article and Find Full Text PDF

The incidence of isoniazid (INH) resistant is increasing globally. This study aimed to identify the molecular mechanisms behind the development of INH resistance in strains collected from the same patients during the standard course of treatment. Three strains were collected from a patient before and during antituberculosis (anti-TB) therapy.

View Article and Find Full Text PDF
Article Synopsis
  • Traditional culture methods for diagnosing infections take a long time, but Nanopore 16S rRNA gene sequencing could speed up bacterial identification in infected fluids.
  • A study tested the effectiveness of Nanopore 16S using various samples, comparing results from different analysis pipelines—Epi2me, Emu, and NanoCLUST—to traditional culturing methods.
  • Emu showed the best accuracy in identifying bacteria, correctly classifying 97.7% of monomicrobial samples, while challenges persisted in dealing with polymicrobial samples, and the method could provide results within 6 hours.
View Article and Find Full Text PDF

Background: HIV infections often develop drug resistance mutations (DRMs), which can increase the risk of virological failure. However, it has been difficult to determine if minor mutations occur in the same genome or in different virions using Sanger sequencing and short-read sequencing methods. Oxford Nanopore Technologies (ONT) sequencing may improve antiretroviral resistance profiling by allowing for long-read clustering.

View Article and Find Full Text PDF

Introduction: Microbes in the built environment have been implicated as a source of infectious diseases. Bacterial culture is the standard method for assessing the risk of exposure to pathogens in urban environments, but this method only accounts for <1% of the diversity of bacteria. Recently, full-length 16S rRNA gene analysis using nanopore sequencing has been applied for microbial evaluations, resulting in a rise in the development of long-read taxonomic tools for species-level classification.

View Article and Find Full Text PDF

Between January 2015 and October 2022, 38 patients with culture-confirmed melioidosis were identified in the Kowloon West (KW) Region, Hong Kong. Notably, 30 of them were clustered in the Sham Shui Po (SSP) district, which covers an estimated area of 2.5 km.

View Article and Find Full Text PDF

Sensitive detection of Mycobacterium tuberculosis (TB) in small percentages in metagenomic samples is essential for microbial classification and drug resistance prediction. However, traditional methods, such as bacterial culture and microscopy, are time-consuming and sometimes have limited TB detection sensitivity. Oxford nanopore technologies (ONT) MinION sequencing allows rapid and simple sample preparation for sequencing.

View Article and Find Full Text PDF

An in-house-developed target amplicon sequencing by next-generation sequencing technology (TB-NGS) enables simultaneous detection of resistance-related mutations in (MTB) against 8 anti-tuberculosis drug classes. In this multi-center study, we investigated the clinical utility of incorporating TB-NGS for rapid drug-resistant MTB detection in high endemic regions in southeast China. From January 2018 to November 2019, 4,047 respiratory specimens were available from patients suffering lower respiratory tract infections in Hong Kong and Guangzhou, among which 501 were TB-positive as detected by in-house IS6110-qPCR assay with diagnostic sensitivity and specificity of 97.

View Article and Find Full Text PDF

Clinical manifestations of tuberculosis range from asymptomatic infection to a life-threatening disease such as tuberculous meningitis (TBM). Recent studies showed that the spectrum of disease severity could be related to genetic diversity among clinical strains of Certain strains are reported to preferentially invade the central nervous system, thus earning the label "hypervirulent strains".However, specific genetic mutations that accounted for enhanced mycobacterial virulence are still unknown.

View Article and Find Full Text PDF

The emergence of multidrug-resistant strains and hyper-virulent strains of are big therapeutic challenges for tuberculosis (TB) control. Repurposing bioactive small-molecule compounds has recently become a new therapeutic approach against TB. This study aimed to identify novel anti-TB agents from a library of small-molecule compounds via a rapid screening system.

View Article and Find Full Text PDF

Bacterial pathogens that cannot be identified using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) are occasionally encountered in clinical laboratories. The 16S rRNA gene is often used for sequence-based analysis to identify these bacterial species. Nevertheless, traditional Sanger sequencing is laborious, time-consuming, and low throughput.

View Article and Find Full Text PDF

The increasing prevalence of N501Y variants of SARS-CoV-2 has kindled global concern due to their enhanced transmissibility. Genome sequencing is the gold standard method to identify the emerging variants of concern. But it is time-consuming and expensive, limiting the widespread deployment of genome surveillance in some countries.

View Article and Find Full Text PDF

Initial cases of coronavirus disease in Hong Kong were imported from mainland China. A dramatic increase in case numbers was seen in February 2020. Most case-patients had no recent travel history, suggesting the presence of transmission chains in the local community.

View Article and Find Full Text PDF

Background: The emergence of Mycobacterium tuberculosis with complex drug resistance profiles necessitates a rapid and comprehensive drug susceptibility test for guidance of patient treatment. We developed two targeted-sequencing workflows based on Illumina MiSeq and Nanopore MinION for the prediction of drug resistance in M. tuberculosis toward 12 antibiotics.

View Article and Find Full Text PDF