In plants, de novo DNA methylation is guided by 24-nt short interfering (si)RNAs in a process called RNA-directed DNA methylation (RdDM). Primarily targeted at transposons, RdDM causes transcriptional silencing and can indirectly influence expression of neighboring genes. During reproduction, a small number of siRNA loci are dramatically upregulated in the maternally derived seed coat, suggesting that RdDM might have a special function during reproduction.
View Article and Find Full Text PDFPetal color is an important trait for both ornamental purposes and also for attracting pollinators. Here, we report a mutation of R-o-18 with pale yellow petals that we retrieved from an EMS population and named ( ). Phenotypic segregation ratio of an F2 mapping population indicates the phenotype is controlled by a single recessive gene.
View Article and Find Full Text PDFReproductive tissues are a rich source of small RNAs, including several classes of short interfering (si)RNAs that are restricted to this stage of development. In addition to RNA polymerase IV-dependent 24-nt siRNAs that trigger canonical RNA-directed DNA methylation, abundant reproductive-specific siRNAs are produced from companion cells adjacent to the developing germ line or zygote and may move intercellularly before inducing methylation. In some cases, these siRNAs are produced via non-canonical biosynthesis mechanisms or from sequences with little similarity to transposons.
View Article and Find Full Text PDFLocules are the seed-bearing structure of fruits. Multiple locules are associated with increased fruit size and seed set, and therefore, control of locule number is an important agronomic trait. Locule number is controlled in part by the CLAVATA-WUSCHEL pathway.
View Article and Find Full Text PDFTwenty-four-nucleotide (nt) small interfering RNAs (siRNAs) maintain asymmetric DNA methylation at thousands of euchromatic transposable elements in plant genomes in a process called RNA-directed DNA methylation (RdDM). RdDM is dispensable for growth and development in Arabidopsis thaliana, but is required for reproduction in other plants, such as Brassica rapa. The 24-nt siRNAs are abundant in maternal reproductive tissue, due largely to overwhelming expression from a few loci in the ovule and developing seed coat, termed siren loci.
View Article and Find Full Text PDFCurr Opin Plant Biol
April 2020
Two trends are changing our understanding of RNA-directed DNA methylation. In model systems like Arabidopsis, tissue-specific analysis of DNA methylation is uncovering dynamic changes in methylation during sexual reproduction and unraveling the contribution of maternal and paternal epigenomes to the developing embryo. These studies indicate that RNA-directed DNA Methylation might be important for mediating balance between maternal and paternal contributions to the endosperm.
View Article and Find Full Text PDFSmall RNAs are important regulators for a variety of biological processes, including leaf development, flowering-time, embryogenesis and defense responses. miR163 is a non-conserved miRNA and its locus has evolved recently through inverted duplication of its target genes to which they belong to the SABATH family of related small-molecule methyltransferases (MTs). In Arabidopsis thaliana, previous study demonstrated that miR163 accumulation was induced by alamethicin treatment, suggesting its roles in defense response pathways.
View Article and Find Full Text PDF