Publications by authors named "Hitzenberger R"

Coefficient of Haze (CoH) was the official proxy for the mass concentration of particulate matter in the US from ca. 1950 onwards. Originally, a linearity between CoH and sample load was claimed, but although shortly after the introduction of the method it was found that the relation between mass loading and the fraction of light 10 absorbed by the sample was identical to the nonlinear curve of the European "Black Smoke" (BS) method this correction was not officially adopted.

View Article and Find Full Text PDF

Steam collection devices collecting aerosol particles into liquid samples are frequently used to analyze water-soluble particulate material. The fate of water-insoluble components is often neglected. In this work, we show that fresh soot particles can be suspended into pure water using a steam collection device, the particle-into-liquid sampler (PILS, Weber et al.

View Article and Find Full Text PDF

We present a model for the internal structure of Saturn's moon Enceladus. This model allows us to estimate the physical conditions at the bottom of the satellite's potential subsurface water reservoir and to determine the radial distribution of pressure and gravity. This leads to a better understanding of the physical and chemical conditions at the water/rock boundary.

View Article and Find Full Text PDF

Mineral dusts originating from Earth's crust are known to be important atmospheric ice nuclei. In agreement with earlier studies, feldspar was found as the most active of the tested natural mineral dusts. Here we investigated in closer detail the reasons for its activity and the difference in the activity of the different feldspars.

View Article and Find Full Text PDF

Number size distributions of atmospheric aerosol particles in the mobility diameter range from 10 to 1000 nm were determined in Budapest, Prague and Vienna for a one-year-long period. Particle number concentrations in various size fractions, their diurnal and seasonal variations, mean size distributions and some properties of new particle formation events were derived and compared. Yearly median particle number concentrations for Budapest, Prague and Vienna were 10.

View Article and Find Full Text PDF

A radiative convective model to calculate the width and the location of the life supporting zone (LSZ) for different, alternative solvents (i.e. other than water) is presented.

View Article and Find Full Text PDF

During a total of 11 months, cloud condensation nuclei (CCN at super-saturation S 0.5%) and condensation nuclei (CN) concentrations were measured in the urban background aerosol of Vienna, Austria. For several months, number size distributions between 13.

View Article and Find Full Text PDF

The performance of Grimm optical particle counters (OPC, models 1.108 and 1.109) was characterized under urban aerosol conditions.

View Article and Find Full Text PDF

Until about a decade ago, black carbon (BC) was thought to be the only light absorbing substance in the atmospheric aerosol except for soil or desert dust In more recent years, light absorbing polymeric carbonaceous material was found in atmospheric aerosols. Absorption increases appreciably toward short wavelengths, so this fraction was called brown carbon. Because brown carbon is thermally rather refractory, it influences the split between organic carbon (OC) and elemental carbon (EC) in thermal methods and, through its light absorption characteristics, leads to overestimations of BC concentrations.

View Article and Find Full Text PDF

A generally accepted method to measure black carbon (BC) or elemental carbon (EC) still does not exist. An earlier study in the Vienna area comparing practically all measurement methods in use in Europe gave comparable BC and EC concentrations under summer conditions (Hitzenberger et al., 2006a).

View Article and Find Full Text PDF

Despite intensive efforts during the past 20 years, no generally accepted standard method exists to measure black carbon (BC) or elemental carbon (EC). Data on BC and EC concentrations are method specific and can differ widely (e.g.

View Article and Find Full Text PDF

During two campaigns in winter 2004, size segregated impactor samples (0.1-10 microm) and filter samples were taken in two Central European cities (Vienna, Austria and Ljubljana, Slovenia). The impactor samples were analyzed for major inorganic ions and short-chain organic acids, total carbon (TC) and black carbon (BC).

View Article and Find Full Text PDF

The CCN (cloud condensation nucleus) activation of pure and coated carbon black particles was investigated using the University of Vienna cloud condensation nuclei counter (Giebl, H.; Berner, A.; Reischl, G.

View Article and Find Full Text PDF

The chemical composition as well as the water uptake characteristics of aerosols was determined in size-segregated samples collected during November 2002 on the Slovenian coast. Major ions, water-soluble organic compounds (WSOC), short-chain carboxylic acids and trace elements were determined in the water-soluble fraction of the aerosol. Total aerosol black carbon (BC) was measured from filter samples.

View Article and Find Full Text PDF

Airborne fungal spores contribute potentially to the organic carbon of the atmospheric aerosol, mainly in the "coarse aerosol" size range 2.5-10 microm aerodynamic equivalent diameter (aed). Here, we report about a procedure to determine the organic carbon content of fungal spores frequently observed in the atmosphere.

View Article and Find Full Text PDF