Mechanisms of cAMP/PKA-induced meiotic arrest in oocytes are not completely identified. In cultured, G2/M-arrested PDE3A(-/-) murine oocytes, elevated PKA activity was associated with inactivation of Cdc2 and Plk1, and inhibition of phosphorylation of histone H3 (S10) and of dephosphorylation of Cdc25B (S323) and Cdc2 (Thr14/Tyr15). In cultured WT oocytes, PKA activity was transiently reduced and then increased to that observed in PDE3A(-/-) oocytes; Cdc2 and Plk1 were activated, phosphorylation of histone H3 (S10) and dephosphorylation of Cdc25B (S323) and Cdc2 (Thr14/Tyr15) were observed.
View Article and Find Full Text PDFNeutrophil-endothelial adhesion is a crucial step in vascular inflammation and is recognized as a direct cause of serious atherosclerosis-mediated diseases. We previously demonstrated that high concentrations of glucose increased adhesion in a protein kinase C (PKC)-dependent manner within 48 h of administration by increasing the surface expression of endothelial adhesion molecules. In this study, we focused on the effects of histamine 2 receptor antagonists on endothelial-neutrophil adhesion and on the surface expression of endothelial adhesion molecules mediated by high glucose levels.
View Article and Find Full Text PDFBackground: Insulin induces endothelium-dependent vasodilatation, which may be casually related to the insulin resistance and hypertension. Endothelium-derived nitric oxide (NO) is the most important mechanism of insulin-induced vasodilatation, and a possible contribution of endothelium-derived hyperpolarizing factor (EDHF) is also considered. Attempts were made to observe the effects of insulin on acetylcholine (ACh)-induced hyperpolarization in the submucosal arteriole of the guinea pig ileum, the objective being to investigate possible involvement of EDHF in the actions of insulin.
View Article and Find Full Text PDFObjective: Endothelial-neutrophil adhesion is crucial for vascular injury, the major cause of diabetic vascular complications. On the other hand, platelet aggregation inhibitors, frequently used for diabetic patients with intermittent claudication, have been shown to decrease the incidence of atherosclerosis-mediated diseases (acute myocardial infarction and stroke). However, whether these agents act directly on the endothelial reactions to hyperglycemia remains unclear.
View Article and Find Full Text PDFBackground And Aim: Many lines of evidence indicate that hyperinsulinemia might be associated with coronary atherosclerosis, and, currently, there are no effective strategies for preventing this. We previously reported that high insulin enhances neutrophil-transendothelial migration, a process that involves increased surface presentation of platelet endothelial cell adhesion molecule-1 (PECAM-1) through a mitogen-activated protein (MAP) kinase-dependent event. In this current study, we examined if antidiabetic agents, especially K(ATP) channel blockers, might similarly protect against the leukocyte-endothelial cell interactions enhanced by high insulin.
View Article and Find Full Text PDFBackground And Aim: There are many lines of evidence indicating that hyperinsulinemia but not hyperglycemia is linked to the development of atherosclerotic diseases such as coronary events in diabetic patients. K(ATP) channel blockers of the sulphonylurea class are used widely to treat type 2 diabetes mellitus even with hyperinsulinemia. In this study, we determined whether K(ATP) channel blockers can protect against atherosclerotic processes enhanced by hyperinsulinemia, namely leukocyte-endothelial cell interactions.
View Article and Find Full Text PDFBackground And Aims: There is growing evidence that hyperinsulinemia is linked to the development of atherosclerosis in patients with diabetes. We demonstrated previously that high insulin exacerbates neutrophil-endothelial cell adhesion and endothelial intercellular adhesion molecule (ICAM)-1 expression through activation of protein kinase C (PKC) and mitogen-activated protein (MAP) kinase. Though 3-hydroxymethyl-3-glutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) have been employed as therapeutic agents in the treatment of dyslipidemia, which is frequently accompanied by diabetes mellitus; it is not known whether statins protect against leukocyte-endothelial interactions, especially in hyperinsulinemia.
View Article and Find Full Text PDFNeutrophil-endothelial adhesion is a crucial step in vascular inflammation, which is recognized as the direct cause of atherosclerosis-mediated serious diseases. We demonstrated previously that high glucose increased adhesion in a protein kinase C (PKC)-dependent manner within 48 h through increasing surface expression of endothelial adhesion molecules. On the other hand, statins, used for patients with hypercholesterolemia, have been shown to decrease the incidence of atherosclerosis-mediated diseases, but direct effects of statins on endothelial cells remain unclear.
View Article and Find Full Text PDFBackground: We previously reported that culture of endothelial cells in the presence of high glucose concentrations (27.8 and 55.5 mM) increase neutrophils adhesion because of the increase in endothelial adhesion molecules expression via activation of a protein kinase C (PKC) pathway.
View Article and Find Full Text PDFBackground: We have previously reported that endothelial cells cultured in the presence of high concentrations of glucose (27.8 and 55.5 mM) exhibited enhanced neutrophil adhesion through increased expression of endothelial adhesion molecules via the activation of a protein kinase C (PKC)-dependent pathway.
View Article and Find Full Text PDFBackground: Atherosclerosis and vascular inflammation induced by hyperglycemia are important factors in the promotion of diabetic complications. One of the earliest events in the inflammatory process is increased binding of neutrophils to endothelial cells. Since vascular inflammation has been recently reported to be crucial for the onset of atherosclerosis-mediated serious diseases (acute myocardial infarction, stroke), in this study, we examined the effects of high glucose concentrations on endothelial-neutrophil cell adhesion and surface expression of endothelial adhesion molecules.
View Article and Find Full Text PDF