Publications by authors named "Hitoshi Miyakawa"

Some organisms have developed a mechanism called environmental sex determination (ESD), which allows environmental cues, rather than sex chromosomes or genes, to determine offspring sex. ESD is advantageous to optimize sex ratios according to environmental conditions, enhancing reproductive success. However, the process by which organisms perceive and translate diverse environmental signals into offspring sex remains unclear.

View Article and Find Full Text PDF

Plastics have benefited our lives in many ways, but their long persistence in the environment causes serious problems. Rapid decomposition and detoxification of plastics after use are significant challenges. As a possible solution, biodegradable plastics have attracted attention, and for environmental risk assessment research on polymer toxicity, use of indicator organisms, like water fleas and fish, has increased globally.

View Article and Find Full Text PDF

Biodegradable polymers are eco-friendly materials and have attracted attention for use in a sustainable society because they are not accumulated in the environment. Although the characteristics of biodegradable polymers have been assessed well, the effects of their degradation products have not. Herein, we comprehensively evaluated the chemical toxicities of biodegradable polyester, polycaprolactone (PCL), and synthetic oligocaprolactones (OCLs) with different degrees of polymerization.

View Article and Find Full Text PDF

Organisms that reproduce sexually have evolved well-organized mechanisms to determine two sexes. Some hymenopterans (such as ants, bees, and wasps) have a complementary sex-determination system in which heterozygosity at one CSD locus induces female development, whereas hemi- or homozygosity at the locus induces male development. This system can generate a high cost of inbreeding, as individuals that are homozygous at the locus become sterile, diploid males.

View Article and Find Full Text PDF

Unlabelled: Chloroplasts are organelles composed of sub-organellar compartments-stroma, thylakoids, and starch granules-and are surrounded by outer and inner envelope membranes (OEM and IEM, respectively). The chloroplast OEM and IEM play key roles not only as a barrier separating the chloroplast components from the cytosol but also in the interchange of numerous metabolites and proteins between the chloroplast interior and the cytosol. Fluorescent protein markers for the chloroplast OEM have been widely used to visualize the outermost border of chloroplasts.

View Article and Find Full Text PDF

Under favorable conditions, daphnids produce only female neonates by parthenogenesis, while they produce male neonates and start sexual reproduction when they detect cues signaling a deteriorating environment. Identifying the regulatory mechanisms of such cyclical parthenogenesis is important for understanding how organisms adapt to environments and expand their habitats. However, most previous studies using the model species and have focused on production of male offspring (sex determination), whereas the process of meiosis induction in females has not been investigated.

View Article and Find Full Text PDF

Fungi belonging to the Ascomycete genus Cordyceps are endoparasitoids and parasites, mainly of insects and other arthropods. Cordyceps militaris has been used as a therapeutic drug for cancer patients. However, the infection, parasitism, and fruiting body formation mechanisms of this fungus are still unknown.

View Article and Find Full Text PDF

Juvenile hormone (JH) are a family of multifunctional hormones regulating larval development, molting, metamorphosis, reproduction, and phenotypic plasticity in arthropods. Based on its importance in arthropod life histories, many insect growth regulators (IGRs) mimicking JH have been designed to control harmful insects in agriculture and aquaculture. These JH analogs (JHAs) may also pose hazards to nontarget species by causing unexpected endocrine-disrupting (ED) effects such as molting and metamorphosis defects, larval lethality, and disruption of the sexual identity.

View Article and Find Full Text PDF

Mechanisms underlying sex determination and differentiation in animals are known to encompass a diverse array of molecular clues. Recent innovations in high-throughput sequencing and mass spectrometry technologies have been widely applied in non-model organisms without reference genomes. Crustaceans are no exception.

View Article and Find Full Text PDF

In the major eusocial species of Hymenoptera, the regulatory mechanisms controlling queen/worker differentiation and exclusive reproduction by queens have been studied extensively. These studies have shown that insulin/insulin-like growth factors and juvenile hormones (JHs) act as key endocrine factors. However, although considerable knowledge has accumulated in this area, large disparities in the regulatory mechanisms governing caste differentiation have been observed in different hymenopteran taxa to date.

View Article and Find Full Text PDF

Background: Self-incompatibility, fusion/non-fusion reactions, and contact reactions (CRs) have all been identified as allorecognition phenomena in ascidians. CR is a reaction characteristic of the hemocytes of , whereby they release phenol oxidase (PO) upon contact with non-self hemocytes. Thus, these cells may represent a primitive form of the vertebrate immune system.

View Article and Find Full Text PDF

The genetic and molecular components of the sex-determination cascade have been extensively studied in the honeybee, Apis mellifera, a hymenopteran model organism. However, little is known about the sex-determination mechanisms found in other non-model hymenopteran taxa, such as ants. Because of the complex nature of the life cycles that have evolved in hymenopteran species, it is difficult to maintain and conduct experimental crosses between these organisms in the laboratory.

View Article and Find Full Text PDF

Environmental waters are polluted by various chemicals originating from human activities. Recently, the environmental risk of juvenile hormones (JHs) to aquatic microcrustaceans has been recognized by risk assessors and researchers. JH is a major arthropod hormone that regulates molting and reproduction and has analogs that have been used as insect growth regulators.

View Article and Find Full Text PDF

A female diploid, male haploid sex determination system (haplodiploidy) is found in hymenopteran taxa, such as ants, wasps, bees and sawflies. In this system, a single, complementary sex-determination (sl-CSD) locus functions as the primary sex-determination signal. In the taxa that has evolved this system, females and males are heterozygous and hemi/homozygous at the CSD locus, respectively.

View Article and Find Full Text PDF

Elaborate regulation of insect metamorphosis is the consequence of physiological cooperation among multiple endocrine factors such as juvenile hormones (JHs) and ecdysteroids. Hormone-induced transcription factors play important roles in substantive interactions between hormonal signaling pathways. In insects, zinc finger transcription factor Krüppel homolog 1 (Kr-h1) is a key gene of the endocrine signaling pathway in which it is directly upregulated by JH receptor Methoprene-tolerant (Met) in the presence of JH and then regulates multiple downstream factors, including components of the ecdysteroid signaling pathway.

View Article and Find Full Text PDF

The two essential insect hormones, ecdysteroids and juvenile hormones, are possessed not only by insects, but also widely by arthropods, and regulate various developmental and physiological processes. In contrast to the abundant information about molecular endocrine mechanisms in insects, the knowledge of non-insect arthropod endocrinology is still limited. In this review, we summarize recent reports about the molecular basis of these two major insect hormones in the freshwater microcrustacean Daphnia, a keystone taxon in limnetic ecology and a bioindicator in environmental studies.

View Article and Find Full Text PDF

The cultured cell-based in vitro assay using the stringency of ligand-receptor interactions is typically useful for screening certain hormone agonists from among a very large number of molecules. However, ligands are frequently altered or modified through evolution; indeed, even in the same receptor orthologs, different ligand sensitivity profiles are considered to arise among species and/or taxa. Such ligand transition has been observed in juvenile hormone (JH), one of the most important endocrine factors in arthropods.

View Article and Find Full Text PDF

One of the defining features of the evolutionary success of insects is the morphological diversification of their appendages, especially mouthparts. Although most insects share a common mouthpart ground plan, there is remarkable diversity in the relative size and shapes of these appendages among different insect lineages. One of the most prominent examples of mouthpart modification can be found in the enlargement of mandibles in stag beetles (Coleoptera, Insecta).

View Article and Find Full Text PDF

Embryo development in arthropods is accompanied by a series of moltings. A cladoceran crustacean Daphnia magna molts three times before reaching first instar neonate during embryogenesis. Previous studies argued ecdysteroids might regulate D.

View Article and Find Full Text PDF

Background: The American alligator (Alligator mississippiensis) displays temperature-dependent sex determination (TSD), in which incubation temperature during embryonic development determines the sexual fate of the individual. However, the molecular mechanisms governing this process remain a mystery, including the influence of initial environmental temperature on the comprehensive gonadal gene expression patterns occurring during TSD.

Results: Our characterization of transcriptomes during alligator TSD allowed us to identify novel candidate genes involved in TSD initiation.

View Article and Find Full Text PDF

Steroid hormone receptor family provides an example of evolution of diverse transcription factors through whole-genome duplication (WGD). However, little is known about how their functions have been evolved after the duplication. Teleosts present a good model to investigate an accurate evolutionary history of protein function after WGD, because a teleost-specific WGD (TSGD) resulted in a variety of duplicated genes in modern fishes.

View Article and Find Full Text PDF

Background: The cladoceran crustacean Daphnia pulex produces female offspring by parthenogenesis under favorable conditions, but in response to various unfavorable external stimuli, it produces male offspring (environmental sex determination: ESD). We recently established an innovative system for ESD studies using D. pulex WTN6 strain, in which the sex of the offspring can be controlled simply by changes in the photoperiod: the long-day and short-day conditions can induce female and male offspring, respectively.

View Article and Find Full Text PDF

Phenotypic plasticity is the ability held in many organisms to produce different phenotypes with a given genome in response to environmental stimuli, such as temperature, nutrition and various biological interactions. It seems likely that environmental signals induce a variety of mechanistic responses that influence ontogenetic processes. Inducible defenses, in which prey animals alter their morphology, behavior and/or other traits to help protect against direct or latent predation threats, are among the most striking examples of phenotypic plasticity.

View Article and Find Full Text PDF

Sex-determination systems can be divided into two groups: genotypic sex determination (GSD) and environmental sex determination (ESD). ESD is an adaptive life-history strategy that allows control of sex in response to environmental cues in order to optimize fitness. However, the molecular basis of ESD remains largely unknown.

View Article and Find Full Text PDF

Juvenile hormone (JH) and JH agonists have been reported to induce male offspring production in various daphnid species including Daphnia magna. We recently established a short-term in vivo screening assay to detect chemicals having male offspring induction activity in adult D. magna.

View Article and Find Full Text PDF