Publications by authors named "Hitoshi Fujisawa"

Ca2+/Calmodulin-dependent protein kinase (CaM kinase) phosphatase, occurring in the cytoplasm of all tissues, dephosphorylates and thereby deactivates multifunctional CaM kinases, such as CaM kinases I, II and IV. In contrast, CaM kinase phosphatase N has been reported to occur almost exclusively in the brain and to be localized in the nucleus in the transfected COS-7 cells, as examined immunocytochemically with antibodies against the carboxyl-terminal segment of the enzyme, indicating its involvement in the deactivation of CaM kinase IV. Here, we show that the majority of the naturally occurring CaM kinase phosphatase N in the brain exists not in the intact form of the enzyme (83.

View Article and Find Full Text PDF

Activity of tyrosine hydroxylase is regulated by feedback inhibition and inactivation by catecholamines, and activation by protein phosphorylation. In this article, reaction mechanisms for the conversion of tyrosine hydroxylase to an inactive/stable form by catecholamines, and activation of tyrosine hydroxylase by phosphorylation at Ser-40 are discussed. Inactivation may be induced by sub-stoichiometric amounts of catecholamines, and activation by phosphorylation of Ser-40 may require phosphorylation of three or all four subunits of a tyrosine hydroxylase molecule.

View Article and Find Full Text PDF

Ca(2+)/calmodulin-dependent protein kinase phosphatase (CaMKP) is a unique protein phosphatase that specifically dephosphorylates and regulates multifunctional Ca(2+)/calmodulin-dependent protein kinases (CaMKs). To clarify the physiological significance of CaMKP, we identified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and fructose bisphosphate aldolase as major binding partners of CaMKP in a soluble fraction of rat brain using the two-dimensional far-Western blotting technique, in conjunction with peptide mass fingerprinting analysis. We analyzed the affinities of these interactions.

View Article and Find Full Text PDF

Calmodulin-dependent protein kinase phosphatase (CaMKP) and CaMKP-N dephosphorylate and regulate multifunctional Ca(2+)/calmodulin-dependent protein kinases. The enzymatic properties of CaMKP-N and CaMKP resemble each other, whereas their localizations are different. CaMKP-N is localized in the nucleus, whereas CaMKP is localized in the cytosol.

View Article and Find Full Text PDF

Ca2+/Calmodulin-dependent protein kinase (CaM kinase) regulatory system is composed of multifunctional CaM kinases such as CaM kinases IV and I, upstream CaM kinases such as CaM kinase kinases alpha and beta, which activate multifunctional CaM kinases, and CaM kinase phosphatases such as CaM kinase phosphatase and CaM kinase phosphatase N, which deactivate the activated multifunctional CaM kinases. To understand the combinations of CaM kinases I and IV, CaM kinase kinases alpha and beta, and CaM kinase phosphatases, the locations of the enzymes in the cell were examined by immunocytochemical studies of cultured cells. The results indicate that CaM kinase I, CaM kinase kinase beta, and CaM kinase phosphatase occur in the cytoplasm and that CaM kinase IV, CaM kinase kinase alpha (and CaM kinase kinase beta in some cell types and tissues), and CaM kinase phosphatase N occur inside the cellular nucleus, suggesting that there are at least two different sets of CaM kinase regulatory systems, one consisting of CaM kinase I, CaM kinase kinase beta, and CaM kinase phosphatase in the cytoplasm and the other consisting of CaM kinase IV, CaM kinase kinase alpha (and CaM kinase kinase beta in some cell types and tissues), and CaM kinase phosphatase N in the nucleus.

View Article and Find Full Text PDF

A cDNA encoding the homolog of the human pre-B-cell colony-enhancing factor (PBEF), a cytokine-like secreted protein, was isolated from a rat cDNA library. This protein existed in both the cytoplasm and nucleus of the cells, and the amount was higher in the cytoplasm than in the nucleus of proliferating PC-12 and Swiss 3T3 cells but higher in the nucleus than in the cytoplasm of the PC-12 cells treated with nerve growth factor and the 3T3 cells grown to a confluent state. Thus, the so-called PBEF is not a cytokine-like secreted protein but an intracellular protein associated with the cell cycle.

View Article and Find Full Text PDF

Ca(2+)/calmodulin-dependent protein kinase phosphatase (CaMKPase) dephosphorylates and regulates multifunctional Ca(2+)/calmodulin-dependent protein kinases (CaMKs). One of the prominent features of CaMKPase is stimulation of phosphatase activity by polycations such as poly-L-lysine (poly(Lys)). Using various polycations, basicity and molecular weight of the polymer proved to be important for the stimulation.

View Article and Find Full Text PDF

Calmodulin-dependent protein kinase IV (CaM-kinase IV) phosphorylated calmodulin (CaM), which is its own activator, in a poly-L-Lys [poly(Lys)]-dependent manner. Although CaM-kinase II weakly phosphorylated CaM under the same conditions, CaM-kinase I, CaM-kinase kinase alpha, and cAMP-dependent protein kinase did not phosphorylate CaM. Polycations such as poly(Lys) were required for the phosphorylation.

View Article and Find Full Text PDF