Oxidative stress results in damage to cellular structures and has been linked to numerous diseases, including cancer. Extracellular superoxide dismutase (EC-SOD) is a principal enzymatic antioxidant in extracellular space. The purpose of this study was to determine whether the expression of EC-SOD protein is altered in the carcinogenetic process of oral squamous-cell carcinoma (OSCC).
View Article and Find Full Text PDFSerpins (serine protease inhibitors) are known as a diverse family of protease inhibitors; however, various other biological activities including tumor suppression, have been recently reported for these molecules. To clarify whether members of the serpin family are involved in OSCC (oral squamous cell carcinoma), global gene screening using microarray analysis was performed with OSCC-derived cell lines. A trend toward diminished expression was shown for some SERPIN genes located on 11q12-q13.
View Article and Find Full Text PDFPurpose: The purpose of this study was to characterize changes in the expression of copper-zinc superoxide dismutase (Cu/Zn-SOD) and manganese SOD (Mn-SOD) in oral squamous-cell carcinoma (OSCC).
Methods: Real-time quantitative reverse transcriptase-polymerase chain reaction analysis of Cu/Zn-SOD and Mn-SOD mRNA expression was carried out in 50 pairs of OSCC tissue specimens and corresponding normal tissues. Mn-SOD protein expression was evaluated further in 65 OSCC tissue samples and 33 oral premalignant lesions (OPLs) using immunohistochemistry.
Purpose: To determine the potential involvement of ANXA1 in oral squamous-cell carcinoma (OSCC), we evaluated the ANXA1 protein expression in oral premalignant lesions (OPLs) and OSCCs and correlated the results with clinicopathologic variables.
Methods: Matched normal and tumour specimens of 44 primary OSCCs and 28 OPLs were analyzed for ANXA1 subcellular localization and protein expression level by immunohistochemistry (IHC). Correlations between ANXA1-IHC staining scores of OSCCs and clinicopathologic features were evaluated by Fisher's exact test.
Autophagy is a dynamic process of subcellular degradation, which has recently sparked great interest because it is involved in various developmental processes and various diseases including cancer. Autophagy-related 16-like 1 is a component of a large protein complex essential for autophagosome formation. We previously applied proteomic methods to characterize differentially expressed proteins in oral squamous cell carcinoma cells and detected significantly high expression levels of autophagy-related 16-like 1 in oral squamous cell carcinoma-derived cell lines compared to human normal oral keratinocytes.
View Article and Find Full Text PDFTo characterize cancer-related gene expression changes in oral squamous cell carcinomas (OSCCs), we compared the gene expression profiles in OSCC-derived cell lines with human normal oral keratinocytes (HNOKs). Microarray analysis identified 166 genes that were up-regulated in OSCC-derived cell lines. Gene ontology analysis showed that cancer-related function had the highest significance.
View Article and Find Full Text PDFBackground: Gelsolin-like actin-capping protein (CapG) is a ubiquitous gelsolin-family actin-modulating protein involved in cell signalling, receptor-mediated membrane ruffling, phagocytosis, and motility. CapG has generated great interest due to its oncogenic function in the control of cell migration or invasion in a variety of cancer cells. We previously applied proteomic methods to characterize differentially expressed proteins in oral squamous-cell carcinoma (OSCC) cells and detected significantly high expression levels of CapG in OSCC-derived cell lines compared to human normal oral keratinocytes.
View Article and Find Full Text PDFTo identify genes associated with radioresistant oral squamous cell carcinoma (OSCC), we compared gene expression signatures between OSCC cell lines exhibiting radioresistance and cells with radiosensitivity after X-ray irradiation in a dose-dependent manner using Affymetrix GeneChip analysis with Human Genome-U133 plus 2.0 GeneChip. The microarray data identified 167 genes that were significantly overexpressed in radioresistant cells after X-ray irradiation.
View Article and Find Full Text PDF