The formation of methylglyoxal (MG), a reactive dicarbonyl compound, is accelerated under hyperglycemia, presumably contributing to tissue injury in diabetes. On the other hand, prostaglandin E2 (PGE2) has been implicated in glomerular hyperfiltration, a characteristic change in the early stage of diabetic nephropathy. We therefore examined whether MG was capable of inducing PGE2 production in rat mesangial cells (RMC) to address a possible mechanism by which hyperglycemia-derived dicarbonyls accelerated the development of diabetic nephropathy.
View Article and Find Full Text PDFObjective: 3-Deoxyglucosone (3-DG), a highly reactive intermediate of the glycation reaction, has been suggested to contribute to the development of diabetes complications. To verify this hypothesis, we assessed the relation between serum 3-DG concentrations and the severity of diabetic microangiopathy in diabetic patients.
Research Design And Methods: We conducted a high-performance liquid chromatography assay to determine the serum 3-DG concentrations of 110 diabetic patients with different degrees of severity of diabetic microangiopathy and 57 age-matched control subjects.