Publications by authors named "Hitomi Aihara"

With few exceptions, laboratory studies of auditory masking in marine mammals have been limited to examining detection thresholds for simple tonal signals embedded in broadband noise. However, detection of a sound has little adaptive advantage without the knowledge of what produced the sound (recognition) and where the sound originated (localization). In the current study, a bottlenose dolphin's masked detection thresholds (energetic masking) and masked recognition thresholds (informational masking) were estimated for a variety of complex signals including dolphin vocalizations, frequency modulated signals, and a 10 kHz pure tone.

View Article and Find Full Text PDF

Metrics related to the frequency spectrum of noise (e.g., critical ratios) are often used to describe and predict auditory masking.

View Article and Find Full Text PDF

Auditory masking occurs when one sound (usually called noise) interferes with the detection, discrimination, or recognition of another sound (usually called the signal). This interference can lead to detriments in a listener's ability to communicate, forage, and navigate. Most studies of auditory masking in marine mammals have been limited to detection thresholds of pure tones in Gaussian noise.

View Article and Find Full Text PDF

The directional properties of bottlenose dolphin clicks, burst-pulse, and whistle signals were measured using a five element array, at horizontal angles of 0°, 45°, 90°, 135°, and 180° relative to a dolphin stationed on an underwater biteplate. Clicks and burst-pulse signals were highly directional with directivity indices of ~11 dB for both signal types. Higher frequencies and higher amplitudes dominated the forward, on-axis sound field.

View Article and Find Full Text PDF