Publications by authors named "Hiteshwari Sinha"

Tomato (Solanum lycopersicum L.) is rich in nutrients and has been an important target for enhancing the accumulation of various metabolites. Tomato also contains cholesterol-derived molecules, steroidal glycoalkaloids (SGAs), which contribute to pathogen defense but are toxic to humans and considered antinutritional compounds.

View Article and Find Full Text PDF

Recent studies propose that primary transcripts of miRNAs (pri-miRNAs) contain small Open Reading Frames (ORFs) capable of encoding miRNA-encoded peptides (miPEPs). These miPEPs can function as transcriptional regulators for their corresponding pri-miRNAs, ultimately enhancing mature miRNA accumulation. Notably, pri-miR408 encodes the functional peptide miPEP408, regulating expression of miR408 and its target genes, providing plant tolerance to stresses.

View Article and Find Full Text PDF

Throughout evolution, plants have developed strategies to confront and alleviate the detrimental impacts of abiotic stresses on their growth and development. The combat strategies involve intricate molecular networks and a spectrum of early and late stress-responsive pathways. Plant peptides, consisting of fewer than 100 amino acid residues, are at the forefront of these responses, serving as pivotal signalling molecules.

View Article and Find Full Text PDF

Tobacco remains one of the most commercially important crops due to the parasympathomimetic alkaloid nicotine used in cigarettes. Most genes involved in nicotine biosynthesis are expressed in root tissues; however, their light-dependent regulation has not been studied. Here, we identified the ELONGATED HYPOCOTYL 5 homolog, NtHY5, from Nicotiana tabacum and demonstrated that NtHY5 could complement the Arabidopsis thaliana hy5 mutant at molecular, morphological and biochemical levels.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are small non-coding RNAs that play a central role in regulating various developmental and biological processes. The expression of miRNAs is differentially modulated in response to various biotic and abiotic stresses. Recent findings have shown that some pri-miRNAs encode small regulatory peptides known as microRNA-encoded peptides (miPEPs).

View Article and Find Full Text PDF