Publications by authors named "Hiteshkumar B Vasava"

Soil health plays a crucial role in crop production, both in terms of quality and quantity, highlighting the importance of effective methods for preserving soil quality to ensure global food security. Soil quality indices (SQIs) have been widely utilized as comprehensive measures of soil function by integrating multiple physical, chemical, and biological soil properties. Traditional SQI analysis involves laborious and costly laboratory analyses, which limits its practicality.

View Article and Find Full Text PDF

The absorbance spectra for air-dried and ground soil samples from Ontario, Canada were collected in the visible and near-infrared (VIS-NIR) region from 343 to 2200 nm. The study examined thirteen combination of six preprocessing (1st derivative, 2nd derivative, Savitzky-Golay, Gap, SNV and Detrend) method included in 'prospectr' R package along with four modeling approaches: partial least square regression (PLSR), cubist, random forest (RF), and extreme learning machine (ELM) for prediction of the soil organic matter (SOM). The 1st derivative + gap, 2nd derivative + gap and standard normal variance (SNV) were the best preprocessing algorithms.

View Article and Find Full Text PDF

The actively heated fiber optics (AHFO) technique has the potential to measure soil water at high spatial and temporal resolutions, and thus it can bridge the measurement gap from point to large scales. However, the availability of power might restrict its use, since high power is required to heat long fiber optic cables under field conditions; this can be a challenge for long-term soil water monitoring under field conditions. This study investigated the performance of different heating strategies (power intensity and heating duration) on soil water measurement by the AHFO technique on three different textured soils.

View Article and Find Full Text PDF

The soil water retention curve (SWRC) shows the relationship between soil water (θ) and water potential (ψ) and provides fundamental information for quantifying and modeling soil water entry, storage, flow, and groundwater recharge processes. While traditionally it is measured in a laboratory through cumbersome and time-intensive methods, soil sensors measuring in-situ θ and ψ show strong potential to estimate in-situ SWRC. The objective of this study was to estimate in-situ SWRC at different depths under two different soil types by integrating measured θ and ψ using two commercial sensors: time-domain reflectometer (TDR) and dielectric field water potential (e.

View Article and Find Full Text PDF