Aqueous dispersions of iron oxide nanoparticles with a high initial magnetic susceptibility (χi) are of interest as contrast agents in electromagnetic tomography. Nanoclusters composed of iron oxide primary particles were formed by co-precipitation of Fe(II) and Fe(III) chlorides at alkaline conditions and high temperature of 95°C. Two-step addition of citrate was used to produce large primary particles and then stabilize the nanoclusters.
View Article and Find Full Text PDFMagnetic nanoparticles that can be transported in subsurface reservoirs at high salinities and temperatures are expected to have a major impact on enhanced oil recovery, carbon dioxide sequestration, and electromagnetic imaging. Herein we report a rare example of steric stabilization of iron oxide (IO) nanoparticles (NPs) grafted with poly(2-acrylamido-2-methylpropanesulfonate-co-acrylic acid) (poly(AMPS-co-AA)) that not only display colloidal stability in standard American Petroleum Institute (API) brine (8% NaCl + 2% CaCl2 by weight) at 90 °C for 1 month but also resist undesirable adsorption on silica surfaces (0.4% monolayer NPs).
View Article and Find Full Text PDFTransport of metal oxide nanoparticles in porous rock is of interest for imaging and oil recovery in subsurface reservoirs, which often contain concentrated brine. Various copolymers composed of acrylic acid and either 2-acrylamido-2-methylpropanesulfonate or styrenesulfonate were synthesized and adsorbed on iron oxide nanoclusters to provide colloidal stability and to achieve low adsorption on silica in high salinity brine composed of 8%wt. NaCl+2%wt.
View Article and Find Full Text PDFA series of sulfonated random and block copolymers were adsorbed on the surface of ~100 nm iron oxide (IO) nanoparticles (NPs) to provide colloidal stability in extremely concentrated brine composed of 8% wt NaCl + 2% wt CaCl2 (API brine; 1.4 M NaCl + 0.2 M CaCl2) at 90 °C.
View Article and Find Full Text PDFMany colloidal synthesis routes are not scalable to high production rates, especially for nanoparticles of complex shape or composition, due to precursor expense and hazards, low yields, and the large number of processing steps. The present work describes a strategy to synthesize hollow nanoparticles (HNPs) out of metal chalcogenides, based on the slow heating of a low-melting-point metal salt, an elemental chalcogen, and an alkylammonium surfactant in octadecene solvent. The synthesis and characterization of CdSe HNPs with an outer diameter of 15.
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2013
The concept of hydrophilic/CO(2)-philic balance (HCB) was extended to describe stabilization of carbon dioxide-in-water (C/W) foams (also called emulsions) with silica nanoparticles adsorbed at the CO(2)-water interface. Opaque, white C/W foams (bubble diameter <100 μm) were generated with either PEG-coated silica or methylsilyl modified silica nanoparticles in a beadpack with CO(2) densities between 0.2 and 0.
View Article and Find Full Text PDFJ Colloid Interface Sci
July 2012
Surfactants have been widely used as templating agents to pattern the orientation of nanoparticles of various conformations. Here we report the use of a lipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), as a template to order CdSe tetrapods (TPs) at the air/water interface using a Langmuir-Blodgett trough. The surface pressure versus area isotherms for CdSe TPs and CdSe TPs/POPC are examined and monitored by Brewster angle microscopy (BAM).
View Article and Find Full Text PDFBackground: Many in vitro studies have demonstrated that silencing of cancerous genes by siRNAs is a potential therapeutic approach for blocking tumor growth. However, siRNAs are not cell type-selective, cannot specifically target tumor cells, and therefore have limited in vivo application for siRNA-mediated gene therapy.
Results: In this study, we tested a functional RNA nanocomplex which exclusively targets and affects human anaplastic large cell lymphoma (ALCL) by taking advantage of the abnormal expression of CD30, a unique surface biomarker, and the anaplastic lymphoma kinase (ALK) gene in lymphoma cells.
Tailoring the surface of nanoparticles is essential for biological applications of magnetic nanoparticles. FePt nanoparticles are interesting candidates owing to their high magnetic moment. Established procedures to make FePt nanoparticles use oleic acid and oleylamine as the surfactants, which make them dispersed in nonpolar solvents such as hexane.
View Article and Find Full Text PDFHyperthermia can be produced by near-infrared laser irradiation of gold nanoparticles present in tumors and thus induce tumor cell killing via a bystander effect. To be clinically relevant, however, several problems still need to be resolved. In particular, selective delivery and physical targeting of gold nanoparticles to tumor cells are necessary to improve therapeutic selectivity.
View Article and Find Full Text PDF