Publications by authors named "Hitesh B Jalani"

Leishmaniasis is a collection of diseases caused by more than 20 parasite species that manifest as either visceral, cutaneous, or mucocutaneous leishmaniasis. Despite the significant mortality and morbidity associated with leishmaniasis, it remains a neglected tropical disease. Existing treatments have variable efficacy, significant toxicity, rising resistance, and limited oral bioavailability, which necessitates the development of novel and affordable therapeutics.

View Article and Find Full Text PDF

The carbonyl-directed, mono C-H amination of arenes has been achieved using [Cp*Ir(III)Cl] as the catalyst and 2,2,2-trichloroethoxycarbonyl (Troc) azide as an aminating reagent. The amination proceeds smoothly with a variety of arylcarbonyl compounds, including alkyl and vinyl arylketones, secondary and tertiary aryl amides, and acetyl indoles. The resulting -TrocNH arylcarbonyl compounds are easily transformed to the corresponding free arylamines, aryl carbamates, or aryl ureas.

View Article and Find Full Text PDF

C-H amination of arenes directed by weakly coordinating Weinreb amides has been achieved with an iridium catalyst and 2,2,2-trichloroethoxycarbonyl (Troc) azide as an aminating agent, providing a robust method of producing synthetic useful -TrocNH aryl Weinreb amides. Taking advantage of the reactivity of Weinreb amide and Troc groups in the amination products, selective hydrolysis was achieved as an attractive process for the synthesis of -NH aryl Weinreb amides, which are the building blocks useful in the synthesis of bioactive compounds, and cascade aminocyclization with primary amines was successful and provided an efficient pathway for the construction of quinazolin-2,4-diones, which are present in various alkaloids and natural products.

View Article and Find Full Text PDF

We recently reported a series of compounds for a solubility-driven optimization campaign of antitrypanosomal compounds. Extending a parasite-hopping approach to the series, a subset of compounds from this library has been cross-screened for activity against the metazoan flatworm parasite, . This study reports the identification and preliminary development of several potently bioactive compounds against adult schistosomes, one or more of which represent promising leads for further assessment and optimization.

View Article and Find Full Text PDF

Utilizing a target repurposing and parasite-hopping approach, we tested a previously reported library of compounds that were active against , plus 31 new compounds, against a variety of protozoan parasites including , , and . This led to the discovery of several compounds with submicromolar activities and improved physicochemical properties that are early leads toward the development of chemotherapeutic agents against kinetoplastid diseases and malaria.

View Article and Find Full Text PDF

An efficient fluorocyclization of ,-unsaturated amides through a formal halocyclization process is developed. The reaction proceeds under transition-metal-free conditions and leads to the formation of fluorinated oxazolidine-2,4-diones with excellent regio- and diastereoselectivity. The evaluation of the reaction mechanism based on preliminary experiments and density functional theory calculations suggests that a synergetic -oxo-fluorination occurs and is followed by an -oxo substitution reaction.

View Article and Find Full Text PDF

An efficient synthesis of 4-methyleneproline derivatives has been developed through an Rh-catalyzed [4 + 1] cycloaddition strategy using 3-methyleneazetidines and diazo compounds. The reaction proceeds under very mild conditions with a high degree of chemoselectivity, and competing experiments revealed that it is the preferred reaction, dominant over the C-H insertion, O-H insertion, and olefin cyclopropanation reactions which are commonly observed in Rh carbene chemistry. This method can incorporate the proline ester scaffold in pharmaceuticals and natural products.

View Article and Find Full Text PDF

The sulfonamidophenylethylamide analogues were explored for finding novel and potent cardiac myosin activators. Among them, N-(4-(N,N-dimethylsulfamoyl)phenethyl-N-methyl-5-phenylpentanamide (13, CMA at 10 µM = 48.5%; FS = 26.

View Article and Find Full Text PDF

A synthetic strategy with the visible-light photo-catalytic synergistic combination of electron and energy transfer processes has been developed. The mild reaction conditions allow the radical-radical cross-coupling phenomenon for the multicomponent synthesis of β-arylsulfonyl(diarylphosphinoyl)-α,α-diarylethyl-amines from readily available arylsulfinic acids (diarylphosphine oxides), 1,1-diarylethylenes and arylazides.

View Article and Find Full Text PDF

A practical iridium-catalyzed cascade/stepwise synthesis of dihydroquinazolinones (DHQs) and bis-DHQs fused to medium to large N-heterocyclic rings is developed. The reaction undergoes benzamide-directed intermolecular C-H amination with an aldehyde-tethered alkyl azide, and then the newly installed amino group undergoes intramolecular cyclization with a remote aldehyde group present in azide and amidyl group of benzamide either intrinsically or catalyzed by phosphoric acid, facilitating the formation of bicyclic and/or tricyclic rings in a very efficient manner.

View Article and Find Full Text PDF

Lapatinib, an approved epidermal growth factor receptor inhibitor, was explored as a starting point for the synthesis of new hits against Trypanosoma brucei, the causative agent of human African trypanosomiasis (HAT). Previous work culminated in 1 (NEU-1953), which was part of a series typically associated with poor aqueous solubility. In this report, we present various medicinal chemistry strategies that were used to increase the aqueous solubility and improve the physicochemical profile without sacrificing antitrypanosomal potency.

View Article and Find Full Text PDF

A small-molecule combinatorial library of 24 compounds with 2-aminoimidazole and 2-aminoimidazolyl-thiazole derivatives was synthesized using a 2-chloro trityl resin. The generated compound library was tested against all the human adenosine receptors subtypes. The 2-aminoimidazole derivatives () showed weak to moderate affinity towards the human adenosine receptors.

View Article and Find Full Text PDF

A new strategy for the sequential formation of aryl and amidyl C-N bonds is reported. Using trichloroethoxysulfonyl azide as a bifunctional nitrogen source, Ir-catalyzed aryl C-H sulfonamidation and subsequent desulfonative amide formation proceed effectively without any need of oxidants or coupling reagents. This protocol is suitable for readily available benzamides and stable carboxylates including primary, secondary, and tertiary alkyl, alkenyl, and phenyl carboxylates, thereby providing a direct and efficient method for the synthesis of biologically and chemically useful N-arylamides.

View Article and Find Full Text PDF

To explore novel cardiac myosin activator, a series of diphenylalkyl substituted 1,3,4-oxadiazoles and 1,2,4-oxadiazoles have been prepared and tested for cardiac myosin ATPase activation in vitro. In all cases, three carbon spacer between the oxadiazole core and one of the phenyl ring was considered crucial. In case of 1,3,4-oxadiazole, zero to two carbon spacer between oxadiazole core and other phenyl ring are favorable.

View Article and Find Full Text PDF

A versatile silver-promoted oxidative cascade reaction of N-aryl-3-alkylideneazetidines with carboxylic acids is reported, providing a very efficient pathway to functionalized fused pyridines. This method allows introduction of fused pyridine ring systems to heterocycles, drugs, and natural products. A mechanistic study revealed that silver salt is essential for the chemo- and regioselective ring expansion, sequential oxidative nucleophilic additions, and oxidative aromatization.

View Article and Find Full Text PDF

To optimize the lead urea scaffold 1 and 2 as selective cardiac myosin ATPase activator, a series of urea derivatives have been synthesized to explore its structure activity relationship. Among them N,N-dimethyl-4-(2-(3-(3-phenylpropyl)ureido)ethyl)benzenesulfonamide (13, CMA = 91.6%, FS = 17.

View Article and Find Full Text PDF

A series of flexible urea derivatives have been synthesized and demonstrated as selective cardiac myosin ATPase activator. Among them 1-phenethyl-3-(3-phenylpropyl)urea (1, cardiac myosin ATPase activation at 10 μM = 51.1%; FS = 18.

View Article and Find Full Text PDF

Astrocytes play a key role in brain homeostasis, protecting neurons against neurotoxic stimuli such as oxidative stress. Therefore, the neuroprotective therapeutics that enhance astrocytic functionality has been regarded as a promising strategy to reduce brain damage. We previously reported that ciclopirox, a well-known antifungal N-hydroxypyridone compound, protects astrocytes from oxidative stress by enhancing mitochondrial function.

View Article and Find Full Text PDF

Soluble epoxide hydrolase (sEH) hydrolyzes epoxyeicosatrienoic acids (EETs) in the metabolic pathway of arachidonic acid and has been considered as an important therapeutic target for chronic diseases such as hypertension, diabetes and inflammation. Although many urea derivatives are known as sEH inhibitors, the enantioselectivity of the inhibitors is not highlighted in spite of the stereoselective hydrolysis of EETs by sEH. In an effort to explore the importance of enantioselectivity in the urea scaffold, a series of enantiomers with the stereocenter adjacent to the urea nitrogen atom were prepared.

View Article and Find Full Text PDF

Here we report novel thiazole-thiophene conjugates as adenosine receptor antagonists. All the molecules were evaluated for their binding affinity for adenosine receptors. Most of the molecules were found to interact with the A1, A2A and A3 adenosine receptor subtypes with good affinity values.

View Article and Find Full Text PDF

The stability of the drug actarit was studied under different stress conditions like hydrolysis (acid, alkaline and neutral), oxidation, photolysis and thermal degradation as recommended by International Conference on Harmonization (ICH) guidelines. Drug was found to be unstable in acidic, basic and photolytic conditions and produced a common degradation product while oxidative stress condition produced three additional degradation products. Drug was impassive to neutral hydrolysis, dry thermal and accelerated stability conditions.

View Article and Find Full Text PDF