Publications by authors named "Hisham Ben-Hamidane"

The NAD-dependent deacetylase SIRT1 controls key metabolic functions by deacetylating target proteins and strategies that promote SIRT1 function such as SIRT1 overexpression or NAD boosters alleviate metabolic complications. We previously reported that SIRT1-depletion in 3T3-L1 preadipocytes led to C-Myc activation, adipocyte hyperplasia, and dysregulated adipocyte metabolism. Here, we characterized SIRT1-depleted adipocytes by quantitative mass spectrometry-based proteomics, gene-expression and biochemical analyses, and mitochondrial studies.

View Article and Find Full Text PDF

The mitochondrial inner membrane glycerophospholipid cardiolipin (CL) associates with mitochondrial proteins to regulate their activities and facilitate protein complex and supercomplex formation. Loss of CL leads to destabilized respiratory complexes and mitochondrial dysfunction. The role of CL in an organism lacking a conventional electron transport chain (ETC) has not been elucidated.

View Article and Find Full Text PDF

The mitochondrial signature glycerophospholipid, cardiolipin (CL), binds to transporters of the inner mitochondrial membrane and plays a central role in formation and stability of respiratory supercomplexes. Functional and structural requirement of CL for mitochondrial membrane proteins has been studied using purified reconstituted proteins or in CL synthesis knockout cells that are viable under specific growth conditions. However, no information is available on mitochondrial function, protein stability, or expression levels in cells during CL depletion.

View Article and Find Full Text PDF

Mesenchymal stem/stromal cells (MSCs) are self-renewing multipotent cells with regenerative, secretory and immunomodulatory capabilities that are beneficial for the treatment of various diseases. To avoid the issues that come with using tissue-derived MSCs in therapy, MSCs may be generated by the differentiation of human embryonic stems cells (hESCs) in culture. However, the changes that occur during the differentiation process have not been comprehensively characterized.

View Article and Find Full Text PDF

Cancer metastasis causes approximately 90% of all cancer-related death and independent of the advancement of cancer therapy, a majority of late stage patients suffers from metastatic cancer. Metastasis implies cancer cell migration and invasion throughout the body. Migration requires the formation of pseudopodia in the direction of movement, but a detailed understanding of this process and accordingly strategies of prevention remain elusive.

View Article and Find Full Text PDF

Unlabelled: Dynamic range limitations are challenging to proteomics, particularly in clinical samples. Affinity proteomics partially overcomes this, yet suffers from dependence on reagent quality. SOMAscan, an aptamer-based platform for over 1000 proteins, avoids that issue using nucleic acid binders.

View Article and Find Full Text PDF

The evolution of data exchange in Mass Spectrometry spans decades and has ranged from human-readable text files representing individual scans or collections thereof (McDonald et al., 2004) through the official standard XML-based (Harold, Means, & Udemadu, 2005) data interchange standard (Deutsch, 2012), to increasingly compressed (Teleman et al., 2014) variants of this standard sometimes requiring purely binary adjunct files (Römpp et al.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSC) are multipotent cells with great potential in therapy, reflected by more than 500 MSC-based clinical trials registered with the NIH. MSC are derived from multiple tissues but require invasive harvesting and imply donor-to-donor variability. Embryonic stem cell-derived MSC (ESC-MSC) may provide an alternative, but how similar they are to ex vivo MSC is unknown.

View Article and Find Full Text PDF

The expansion of fat mass in the obese state is due to increased adipocyte hypertrophy and hyperplasia. The molecular mechanism that drives adipocyte hyperplasia remains unknown. The NAD(+)-dependent protein deacetylase sirtuin 1 (SIRT1), a key regulator of mammalian metabolism, maintains proper metabolic functions in many tissues, counteracting obesity.

View Article and Find Full Text PDF

Mass spectrometry-based quantitative proteomics is a powerful method for in-depth exploration of protein expression, allowing researchers to probe its regulation and study signal-transduction networks, protein turnover, secretion, and spatial distribution, as well as post-translational modification and protein-protein interaction, on a large scale. Precise protein quantitation may be achieved by incorporation of stable isotopes, which introduce a mass shift detectable by mass spectrometry, allowing multiplexing of several samples and therefore relative quantification. Stable isotope incorporation into proteins or peptides can be attained either by metabolic labeling (e.

View Article and Find Full Text PDF

Background: RNA editing encompasses a post-transcriptional process in which the genomically templated sequence is enzymatically altered and introduces a modified base into the edited transcript. Mammalian C-to-U RNA editing represents a distinct subtype of base modification, whose prototype is intestinal apolipoprotein B mRNA, mediated by the catalytic deaminase Apobec-1. However, the genome-wide identification, tissue-specificity and functional implications of Apobec-1-mediated C-to-U RNA editing remain incompletely explored.

View Article and Find Full Text PDF

Mass spectrometry techniques employing electron capture and electron transfer dissociation represent powerful approaches for the analysis of biological samples. Despite routine employment in analytical fields, the underlying physical processes dictating peptide fragmentation remain less understood. Among the most accepted mechanisms, the Cornell proposal of McLafferty postulates that the homolytic cleavage of N-C(α) bonds located in the peptide backbone occurs on the right (C-terminal) side of a hydrogen acceptor carbonyl group.

View Article and Find Full Text PDF

Much research has been dedicated to understanding the molecular basis of UV damage to biomolecules, yet many questions remain regarding the specific pathways involved. Here we describe a genome-mediated mechanism that causes site-specific virus protein cleavage upon UV irradiation. Bacteriophage MS2 was disinfected with 254 nm UV, and protein damage was characterized with ESI- and MALDI-based FT-ICR, Orbitrap, and TOF mass spectroscopy.

View Article and Find Full Text PDF

Site-specific reproducibility and repeatability of electron capture dissociation (ECD) in Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) are of fundamental importance for product ion abundance (PIA)-based peptide and protein structure analysis. However, despite the growing interest in ECD PIA-based applications, these parameters have not yet been investigated in a consistent manner. Here, we first provide a detailed description of the experimental parameters for ECD-based tandem mass spectrometry performed on a hybrid linear ion trap (LTQ) FT-ICR MS.

View Article and Find Full Text PDF

The amino acid sequence determines the individual protein three-dimensional structure and its functioning in an organism. Therefore, "reading" a protein sequence and determining its changes due to mutations or post-translational modifications is one of the objectives of proteomic experiments. The commonly utilized approach is gradient high-performance liquid chromatography (HPLC) in combination with tandem mass spectrometry.

View Article and Find Full Text PDF

The conformations of a number of M2TMP(22-46) sequence variants have been investigated using ion mobility spectrometry (IMS). Substantial conformational changes were evidenced by IMS upon the variation of a single amino acid in the peptide sequence, with two main drift time signatures. Replica-exchange molecular dynamics simulations were used to help assign the structures of the different identified conformers.

View Article and Find Full Text PDF

We report on the characteristics of the radical-ion-driven dissociation of a diverse array of β-amino acids incorporated into α-peptides, as probed by tandem electron-capture and electron-transfer dissociation (ECD/ETD) mass spectrometry. The reported results demonstrate a stronger ECD/ETD dependence on the nature of the amino acid side chain for β-amino acids than for their α-form counterparts. In particular, only aromatic (e.

View Article and Find Full Text PDF

We present mechanistic studies aimed at improving the understanding of the product ion formation rules in electron capture dissociation (ECD) of peptides and proteins in Fourier transform ion cyclotron resonance mass spectrometry. In particular, we attempted to quantify the recently reported general correlation of ECD product ion abundance (PIA) with amino acid hydrophobicity. The results obtained on a series of model H-RAAAAXAAAAK-OH peptides confirm a direct correlation of ECD PIA with X amino acid hydrophobicity and polarity.

View Article and Find Full Text PDF

The rules for product ion formation in electron capture dissociation (ECD) mass spectrometry of peptides and proteins remain unclear. Random backbone cleavage probability and the nonspecific nature of ECD toward amino acid sequence have been reported, contrary to preferential channels of fragmentation in slow heating-based tandem mass spectrometry. Here we demonstrate that for amphipathic peptides and proteins, modulation of ECD product ion abundance (PIA) along the sequence is pronounced.

View Article and Find Full Text PDF

We decoupled electron-transfer dissociation (ETD) and collision-induced dissociation of charge-reduced species (CRCID) events to probe the lifetimes of intermediate radical species in ETD-based ion trap tandem mass spectrometry of peptides. Short-lived intermediates formed upon electron transfer require less energy for product ion formation and appear in regular ETD mass spectra, whereas long-lived intermediates require additional vibrational energy and yield product ions as a function of CRCID amplitude. The observed dependencies complement the results obtained by double-resonance electron-capture dissociation (ECD) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and ECD in a cryogenic ICR trap.

View Article and Find Full Text PDF

Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) has been used to probe the interaction of the anticancer drug cisplatin with oligonucleotides. The binding kinetics, the nature of the adducts formed, and the location of the binding site within the specifically designed double-stranded DNA oligonucleotides, ds(GTATTGGCACGTA) and ds(GTACCGGTGTGTA), were determined by recording mass spectra over time and/or employing tandem mass spectrometry (MS/MS). The FT-ICR MS studies show that binding to DNA takes place via a [Pt(NH 3) 2Cl] (+) intermediate prior to formation of bifunctional [Pt(NH 3) 2] (2+) adducts.

View Article and Find Full Text PDF