Publications by authors named "Hisayoshi Yoshizaki"

During early development, the enteric nervous system forms from the migration of enteric neural crest cells (ENCCs) from the foregut to the hindgut, where they undergo proliferation and differentiation facilitated by interactions with enteric mesenchymal cells (EMCs). This study investigates the impact on ENCC migration of EMC-ENCC communication mediated by GFRA1b expressed in EMCs. GFRA1-expressing cells in day 11-12 (E11-12) mouse embryos differentiated into smooth muscle cells from E12 onwards.

View Article and Find Full Text PDF

Purpose: Cell-based therapy is a potential treatment option for neurointestinal diseases by serving as a source of neural progenitor cells to replace missing or abnormal enteric neurons. Using an ex vivo transplantation model, we recently demonstrated that treatment with collagenase and fibronectin promotes infiltration of transplanted enteric neural crest cells (ENCCs) toward the colon lumen. The aim of this study was to determine whether this new method also promotes colonization of transplanted ENCCs in vivo.

View Article and Find Full Text PDF

The enteric nervous system (ENS) regulates gastrointestinal motility, secretion, and absorption. Developmental ENS dysplasia causes intestinal ganglion dysfunction, including Hirschsprung's disease. Given their potential ability to replenish insufficient neurons, transplantation of enteric neural cells provides the prospect of a cure.

View Article and Find Full Text PDF

Purpose: Rupture of lens cataract (RLC) is a hereditary mouse model that shows spontaneous rupture of the lens at the posterior pole at 45-100 days of age. The responsible gene for this phenotype was identified as , a guanine nucleotide exchange factor for small GTPase Rac1. This study was performed to elucidate the pathway initiating this phenotype.

View Article and Find Full Text PDF

The enteric nervous system (ENS) is a network of neurons and glia that are derived from enteric neural crest cells (ENCCs) and essential for regulating peristaltic activity of the colon. ENCCs migrate along the gastrointestinal tract to form the ENS, and disruption of ENCC motility leads to ENS disorders, such as Hirschsprung's disease. Previous ENCC-transplant experiments show that ENCCs can invade into isolated mouse intestines by age E13.

View Article and Find Full Text PDF

Epithelial organs are made of a well-polarized monolayer of epithelial cells, and their morphology is maintained strictly for their proper functioning. The roles of lipids are not only to generate the membrane, but also to provide the specific domains for signal transduction, or to transmit signals as second messengers. By using a liquid chromatography-electrospray ionization mass spectrometry (LC-MS)/MS method, we here analyzed sphingolipids in MDCK cysts under various conditions.

View Article and Find Full Text PDF

Epithelial organs are made of a well-polarized monolayer of epithelial cells, and their morphology must be maintained for their proper function. To examine the genes that are specifically expressed in the late stages of cystogenesis and are involved in maintaining the morphology of the mature cysts, we performed a microarray analysis comparing the mRNA expression between the early and late stages of Madin-Darby Canine Kidney (MDCK) cystogenesis. We found that one of the gene candidates, Ripply1, was expressed higher in the late stages, and its expression was also transiently much higher in the early stages.

View Article and Find Full Text PDF

Background: Protein phosphorylation is a post-translational modification that is essential for a wide range of eukaryotic physiological processes, such as transcription, cytoskeletal regulation, cell metabolism, and signal transduction. Although more than 200,000 phosphorylation sites have been reported in the human genome, the physiological roles of most remain unknown. In this study, we provide some useful datasets for the assessment of functional phosphorylation signaling using a comparative genome analysis of phosphorylation motifs.

View Article and Find Full Text PDF

Background: Protein phosphorylation is catalyzed by kinases and is involved in the regulation of a wide range of processes. The phosphosites in protein sequence motifs determine the types of kinases involved. The development of phosphoproteomics has allowed the identification of huge numbers of phosphosites, some of which are not involved in physiological functions.

View Article and Find Full Text PDF

Phosphoinositides (PtdInss) play key roles in cell polarization and motility. With a series of biosensors based on Förster resonance energy transfer, we examined the distribution and metabolism of PtdInss and diacylglycerol (DAG) in stochastically migrating Madin-Darby canine kidney (MDCK) cells. The concentrations of phosphatidylinositol (4,5)-bisphosphate, phosphatidylinositol (3,4,5)-trisphosphate (PIP(3)), phosphatidylinositol (3,4)-bisphosphate, and DAG were higher at the plasma membrane in the front of the cell than at the plasma membrane of the rear of the cell.

View Article and Find Full Text PDF

We studied the spatiotemporal regulation of Akt (also called protein kinase B), phosphatidylinositol-3,4-bisphosphate [PtdIns(3,4)P2], and phosphatidylinositol-3,4,5-trisphosphate [PtdIns(3,4,5)P3] by using probes based on the principle of fluorescence resonance energy transfer. On epidermal growth factor (EGF) stimulation, the amount of PtdIns(3,4,5)P3 was increased diffusely in the plasma membrane, whereas that of PtdIns(3,4)P2 was increased more in the nascent lamellipodia than in the plasma membrane of the central region. The distribution and time course of Akt activation were similar to that of increased PtdIns(3,4)P2 levels, which were most prominent in the nascent lamellipodia.

View Article and Find Full Text PDF

Zebrafish signal transducer and activator of transcription 3 (STAT3) controls the cell movements during gastrulation. Here, we show that noncell-autonomous activity of STAT3 signaling in gastrula organizer cells controls the polarity of neighboring cells through Dishevelled-RhoA signaling in the Wnt-planar cell polarity (Wnt-PCP) pathway. In STAT3-depleted embryos, although all the known molecules in the Wnt-PCP pathway were expressed normally, the RhoA activity in lateral mesendodermal cells was down-regulated, resulting in severe cell polarization defects in convergence and extension movements identical to Strabismus-depleted embryos.

View Article and Find Full Text PDF

Rho family GTPases play pivotal roles in cytokinesis. By using probes based on the principle of fluorescence resonance energy transfer (FRET), we have shown that in HeLa cells RhoA activity increases with the progression of cytokinesis. Here we show that in Rat1A cells RhoA activity remained suppressed during most of the cytokinesis.

View Article and Find Full Text PDF

A major function of Rho-family GTPases is to regulate the organization of the actin cytoskeleton; filopodia, lamellipodia, and stress fiber are regarded as typical phenotypes of the activated Cdc42, Rac, and Rho, respectively. Using probes based on fluorescent resonance energy transfer, we report on the spatiotemporal regulation of Rac1 and Cdc42 at lamellipodia and membrane ruffles. In epidermal growth factor (EGF)-stimulated Cos1 and A431 cells, both Rac1 and Cdc42 were activated diffusely at the plasma membrane, followed by lamellipodial protrusion and membrane ruffling.

View Article and Find Full Text PDF

Rho-family GTPases regulate many cellular functions. To visualize the activity of Rho-family GTPases in living cells, we developed fluorescence resonance energy transfer (FRET)-based probes for Rac1 and Cdc42 previously (Itoh, R.E.

View Article and Find Full Text PDF

Rho family G proteins, including Rac and Cdc42, regulate a variety of cellular functions such as morphology, motility, and gene expression. We developed fluorescent resonance energy transfer-based probes which monitored the local balance between the activities of guanine nucleotide exchange factors and GTPase-activating proteins for Rac1 and Cdc42 at the membrane. These probes, named Raichu-Rac and Raichu-Cdc42, consisted of a Cdc42- and Rac-binding domain of Pak, Rac1 or Cdc42, a pair of green fluorescent protein mutants, and a CAAX box of Ki-Ras.

View Article and Find Full Text PDF