Microbial fuel cells equipped with SPEEK-MEA (SPEEK-MFC) and Nafion-MEA (Nafion-MFC) were constructed with organic waste as electron donor and lake sediment as inoculum and were then evaluated comprehensively by electrochemical and microbial analyses. The proton conductivity of SPEEK was several hundreds-fold lower than that of Nafion 117, whereas the oxygen mass and diffusion transfer coefficients of SPEEK were 10-fold lower than those of Nafion 117. It was difficult to predict which was better membrane for MFC based on the feature of membrane.
View Article and Find Full Text PDFIt is important for practical use of microbial fuel cells (MFCs) to not only develop electrodes and proton exchange membranes but also to understand the bacterial community structure related to electricity generation. Four lactate fed MFCs equipped with different membrane electrode assemblies (MEAs) were constructed with paddy field soil as inoculum. The MEAs significantly affected the electricity-generating properties of the MFCs.
View Article and Find Full Text PDFAnionic hydrated titanate (H(n)TiO(m): HTO) nanosheets and cationic magnesium-aluminum layered double hydroxide (Mg-Al LDH) nanosheets were electrophoretically deposited on positively and negatively charged indium tin oxide (ITO)-coated glass substrates, respectively. The HTO nanosheets and Mg-Al LDH nanosheets obtained were identified in neutral water as H(2)Ti(4)O(9)·nH(2)O with a ζ-potential of -23 mV and Mg(6)Al(2)(OH)(18)·4.5H(2)O with a ζ-potential of +41 mV, respectively.
View Article and Find Full Text PDF