This paper describes a novel signal processing method to characterize the activity of ion channels on a lipid bilayer system in a real-time and quantitative manner. Lipid bilayer systems, which enable single-channel level recordings of ion channel activities against physiological stimuli in vitro, are gaining attention in various research fields. However, the characterization of ion channel activities has heavily relied on time-consuming analyses after recording, and the inability to return the quantitative results in real time has long been a bottleneck to incorporating the system into practical products.
View Article and Find Full Text PDFThis paper reports a volatile organic compound (VOC) sensor based on olfactory receptors that were reconstituted into a lipid bilayer and used in a specifically designed gas flow system for rapid parts per billion (ppb)-level detection. This VOC sensor achieves both rapid detection and high detection probability because of its gas flow system and array design. Specifically, the gas flow system includes microchannels and hydrophobic microslits, which facilitate both the introduction of gas into the droplet and droplet mixing.
View Article and Find Full Text PDFThe exocyst complex is a hetero-octameric protein complex that functions during cell polarization by tethering the secretory vesicle to the target membrane. The yeast exocyst subunit Sec3 binds to phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) and the small GTPases Rho1 and Cdc42 via its N-terminal domain (Sec3-N), and these interactions target Sec3 to the plasma membrane. Here we report the crystal structure of the Sec3-N in complex with Rho1 at 2.
View Article and Find Full Text PDFTail anchored (TA) proteins, which are important for numerous cellular processes, are defined by a single transmembrane domain (TMD) near the C-terminus. The membrane insertion of TA proteins is mediated by the highly conserved ATPase Get3. Here we report the crystal structures of Get3 in ADP-bound and nucleotide-free forms at 3.
View Article and Find Full Text PDFNEMO is essential for activation of the NF-kappaB signaling pathway, which is regulated by ubiquitination of proteins. The C-terminal leucine zipper of NEMO and its adjacent coiled-coil region (CC2-LZ) reportedly bind to linear ubiquitin chains with 1 microM affinity and to Lys 63-linked chains with 100 microM affinity. Here we report the crystal structure of the CC2-LZ region of mouse NEMO in complex with Lys 63-linked di-ubiquitin (K63-Ub(2)) at 2.
View Article and Find Full Text PDFRAP80 has a key role in the recruitment of the Abraxas-BRCC36-BRCA1-BARD1 complex to DNA-damage foci for DNA repair through specific recognition of Lys 63-linked polyubiquitinated proteins by its tandem ubiquitin-interacting motifs (UIMs). Here, we report the crystal structure of the RAP80 tandem UIMs (RAP80-UIM1-UIM2) in complex with Lys 63-linked di-ubiquitin at 2.2 A resolution.
View Article and Find Full Text PDFDeubiquitinating enzymes (DUBs) remove ubiquitin from conjugated substrates to regulate various cellular processes. The Zn(2+)-dependent DUBs AMSH and AMSH-LP regulate receptor trafficking by specifically cleaving Lys 63-linked polyubiquitin chains from internalized receptors. Here we report the crystal structures of the human AMSH-LP DUB domain alone and in complex with a Lys 63-linked di-ubiquitin at 1.
View Article and Find Full Text PDFH(+)-translocating pyrophosphatases (H(+)-PPases) are proton pumps that are found in many organisms, including plants, bacteria and protozoa. Streptomyces coelicolor is a soil bacterium that produces several useful antibiotics. Here we investigated the properties of the H(+)-PPase of S.
View Article and Find Full Text PDFRedox control of disulfide-bond formation in the H+-pyrophosphatase of Streptomyces coelicolor was investigated using cysteine mutants expressed in Escherichia coli. The wild-type enzyme, but not a cysteine-less mutant, was reversibly inactivated by oxidation. To determine the residues involved in oxidative inactivation, different cysteine residues were replaced.
View Article and Find Full Text PDFThe H(+)-pyrophosphatase (H(+)-PPase) consists of a single polypeptide, containing 16 or 17 transmembrane domains. To determine the higher order oligomeric state of Streptomyces coelicolor H(+)-PPase, we constructed a series of cysteine substitution mutants and expressed them in Escherichia coli. Firstly, we analyzed the formation of disulfide bonds, promoted by copper, in mutants with single cysteine substitutions.
View Article and Find Full Text PDFThe H+-translocating pyrophosphatase (H+-PPase) is a proton pump that is found in a wide variety of organisms. It consists of a single polypeptide chain that is thought to possess between 14 and 17 transmembrane domains. To determine the topological arrangement of its conserved motifs and transmembrane domains, we carried out a cysteine-scanning analysis by determining the membrane topology of cysteine substitution mutants of Streptomyces coelicolor H+-PPase expressed in Escherichia coli using chemical reagents.
View Article and Find Full Text PDFH(+)-pyrophosphatase (H(+)-PPase), which pumps H(+) across membranes coupled with PP(i) hydrolysis, is found in most plants, and some parasitic protists, eubacteria and archaebacteria. We assayed a number of extracts derived from 145 marine invertebrates as to their inhibitory effect on plant vacuolar H(+)-PPase. Acylspermidine derivatives [RCONH(CH(2))(3)N(CH(3))(CH(2))(4)N(CH(3))(2)] from a soft coral (Sinularia sp.
View Article and Find Full Text PDFTanpakushitsu Kakusan Koso
September 2002