Adipose-derived stem cell (ASC)-released exosomes (ASCexos) have multiple biological activities. We examined the effect of ASCexos derived from the inguinal adipose tissue of exercise-trained rats (EX-ASCexos) on adipogenic conversion of 3T3-L1 cells and analyzed their microRNA (miRNA) expression profiles. Differentiation of 3T3-L1 cells into adipocytes was performed for 9 d with EX-ASCexos or ASCexos from sedentary control rats (SED-ASCexos), and the expression of proteins and miRNA involved in adipogenic differentiation were determined.
View Article and Find Full Text PDFHigh-intensity interval training (HIIT) reportedly enhances the functional properties of the musculoskeletal system. However, the effects of HIIT on tendons remain unclear. Sixteen male rats were randomly assigned to the control (Con) or HIIT group (n = 8 in each group).
View Article and Find Full Text PDFImmobilization or aging associated with limited physical activity can lead to the functional deterioration of tendons, which has become an important public health concern. Therefore, growing research is focused on the effect of exercise training on preserving tendon function. Exercise training subjects muscles and tendons to repeated mechanical stress, and in vitro studies have revealed that repetitive mechanical loading stimulates tendon cell responses to changes in the extracellular matrix and functional properties of the tendon.
View Article and Find Full Text PDFMitochondria play a principal role in metabolism, and mitochondrial respiration is an important process for producing adenosine triphosphate. Recently, we showed the possibility that the muscle-specific protein myoglobin (Mb) interacts with mitochondrial complex IV to augment the respiration capacity in skeletal muscles. However, the precise mechanism for the Mb-mediated upregulation remains under debate.
View Article and Find Full Text PDFControlling the differentiation potential of adipose-derived stem cells (ADSCs) is attracting attention as a new strategy for the prevention and treatment of obesity. Here, we aimed to observe the effect of exercise training (TR) and high-fat diet (HFD) on the metabolic profiles of ADSCs-derived adipocytes. The rats were divided into four groups: normal diet (ND)-fed control (ND-SED), ND-fed TR (ND-TR), HFD-fed control (HFD-SED), and HFD-fed TR (HFD-TR).
View Article and Find Full Text PDFNew Findings: What is the central question of this study? Exercise can stimulate brown adipose tissue (BAT) with subsequent increase in uncoupling protein 1 expression and mitochondrial biogenesis. In that case, do BAT-specific Hox genes modify BAT functioning and cause uncoupling protein expression changes due to exercise? What is the main finding and its importance? Exercise enhanced brown adipocyte markers, with significant upregulation of HoxA5 and downregulation of HoxC10 mRNA expression in rat BAT. HoxA5 and HoxC10 are thus likely to play distinct roles in exercise-induced changes in BAT markers during the early postnatal period.
View Article and Find Full Text PDFExercise training is well known to enhance adipocyte lipolysis in response to hormone challenge. However, the existence of a relationship between the timing of exercise training and its effect on adipocyte lipolysis is unknown. To clarify this issue, Wistar rats were run on a treadmill for 9 weeks in either the early part (E-EX) or late part of the active phase (L-EX).
View Article and Find Full Text PDFAims: Obesity suppresses brain-derived neurotrophic factor (BDNF) expression and increases the expression of pro-inflammatory cytokines. Herein, we assessed whether exercise training (ET), melatonin administration (MT), or their combination can affect the expressions of BDNF and cytokines in the cerebellum of high-fat diet (HFD)-fed rats.
Methods: Wistar rats (4 weeks old) were divided into five groups: normal diet (ND)-fed control (ND-SED), HFD-fed control (HFD-SED), HFD-fed ET (HFD-ET), HFD-fed MT (HFD-MT), and HFD-fed MT plus ET (HFD-ETMT) group.
This study examined the association between changes in mRNA expression of development-related genes including those of the homeobox (Hox) family and growth-dependent increases in inguinal, mesenteric, and epididymal white adipose tissue (WAT) at 4, 6, 10, and 14 weeks of age in rats. We also examined the effects of a 9-week exercise training regimen starting at 5 weeks of age on the mRNA levels of the genes of interest. HoxC8, HoxC9, Gpc4, Bmpr1a, Pparγ, Pgc1α, Adrb3, Hsl, leptin, and adiponectin in each type of WAT - except HoxA5, Gpc4, and Pgc1α in epididymal - showed a positive association between WAT weights and WAT mRNA levels; however, the slope of the regression lines exhibited fat depot-specific differences.
View Article and Find Full Text PDFβ-Guanidinopropionic acid (β-GPA) feeding inhibits growth-associated gain of body mass. It remains unknown, however, whether and how β-GPA feeding affects growth-associated increase in white adipose tissue (WAT) mass. We examined the effects of 4- and 8-week β-GPA feeding on serum myostatin levels and expression of genes and proteins related to adipogenesis, lipolysis, and liposynthesis in epididymal WAT (eWAT) and brown adipose tissue (BAT) in 3-week-old, juvenile male mice.
View Article and Find Full Text PDFUnder acute hypoxic conditions, the muscle oxygen uptake (mV˙O) during exercise is reduced by the restriction in oxygen-supplied volume to the mitochondria within the peripheral tissue. This suggests the existence of a factor restricting the mV˙O under hypoxic conditions at the peripheral tissue level. Therefore, this study set out to test the hypothesis that the restriction in mV˙O is regulated by the net decrease in intracellular oxygen tension equilibrated with myoglobin oxygen saturation (∆PO) during muscle contraction under hypoxic conditions.
View Article and Find Full Text PDFKey Points: Mitochondrial respiration is regulated by multiple elaborate mechanisms. It has been shown that muscle specific O2 binding protein, Myoglobin (Mb), is localized in mitochondria and interacts with respiratory chain complex IV, suggesting that Mb could be a factor that regulates mitochondrial respiration. Here, we demonstrate that muscle mitochondrial respiration is improved by Mb overexpression via up-regulation of complex IV activity in cultured myoblasts; in contrast, suppression of Mb expression induces a decrease in complex IV activity and mitochondrial respiration compared with the overexpression model.
View Article and Find Full Text PDFAt onset of muscle contraction, myoglobin (Mb) immediately releases its bound O2 to the mitochondria. Accordingly, intracellular O2 tension (PmbO2) markedly declines in order to increase muscle O2 uptake (mVO2). However, whether the change in PmbO2 during muscle contraction modulates mVO2 and whether the O2 release rate from Mb increases in endurance-trained muscles remain unclear.
View Article and Find Full Text PDFJ Appl Physiol (1985)
February 2013
The mechanisms underlying subcellular oxygen transport mediated by myoglobin (Mb) remain unclear. Recent evidence suggests that, in the myocardium, transverse diffusion of Mb is too slow to effectively supply oxygen to meet the immediate mitochondrial oxygen demands at the onset of muscle contractions. The cell may accommodate the demand by maintaining the distribution of Mb to ensure a sufficient O(2) supply in the immediate vicinity of the mitochondria.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2012
Since carnitine plays an important role in fat oxidation, influx of carnitine could be crucial for muscle metabolism. OCTN2 (SLC22A5), a sodium-dependent solute carrier, is assumed to transport carnitine into skeletal muscle cells. Acute regulation of OCTN2 activity in rat hindlimb muscles was investigated in response to electrically induced contractile activity.
View Article and Find Full Text PDFIn order to obtain evidence that Mb releases O(2) during muscle contraction, we have set up a buffer-perfused hindlimb rat model and applied NIRS to detect the dynamics of tissue deoxygenation during contraction. The NIRS signal was monitored on hindlimb muscle during twitch contractions at 1 Hz, evoked via electrostimulator at different submaximal levels. The hindlimb perfusion was carried out by perfusion of Krebs Bicarbonate buffer.
View Article and Find Full Text PDFAlthough the O(2) gradient regulates O(2) flux from the capillary into the myocyte to meet the energy demands of contracting muscle, intracellular O(2) dynamics during muscle contraction remain unclear. Our hindlimb perfusion model allows the determination of intracellular myoglobin (Mb) saturation ( ) and intracellular oxygen tension of myoglobin ( ) in contracting muscle using near infrared spectroscopy (NIRS). The hindlimb of male Wistar rats was perfused from the abdominal aorta with a well-oxygenated haemoglobin-free Krebs-Henseleit buffer.
View Article and Find Full Text PDF