Publications by authors named "Hisashi Shima"

Device implementation of reservoir computing, which is expected to enable high-performance data processing in simple neural networks at a low computational cost, is an important technology to accelerate the use of artificial intelligence in the real-world edge computing domain. Here, we propose an ionic liquid-based physical reservoir device (IL-PRD), in which copper cations dissolved in an IL induce diverse electrochemical current responses. The origin of the electrochemical current from the IL-PRD was investigated spectroscopically in detail.

View Article and Find Full Text PDF
Article Synopsis
  • Direct observation of copper (Cu) within Cu-chabazite (CHA) zeolite has been successfully achieved through a method called electron ptychography, using Wigner distribution deconvolution for analysis.
  • The study assessed the imaging capabilities of the ptychography technique by comparing simulated images of zeolite columns with and without Cu, revealing that false contrasts can occur but the method can effectively differentiate between Cu-containing and Cu-free columns.
  • Experimental results indicated that images taken of samples containing Cu displayed significant contrast in the six-membered rings, whereas no such contrast was seen in those without Cu, highlighting ptychography's potential for studying sensitive materials at the atomic level.
View Article and Find Full Text PDF

Herein, a physical reservoir device that uses faradaic currents generated by redox reactions of metal ions in ionic liquids was developed. Synthetic time-series data consisting of randomly arranged binary number sequences ("1" and "0") were applied as isosceles-triangular voltage pulses with positive and negative voltage heights, respectively, and the effects of the faradaic current on short-term memory and parity-check task accuracies were verified. The current signal for the first half of the triangular voltage-pulse period, which contained a much higher faradaic current component compared to that of the second half of the triangular voltage-pulse period, enabled higher short-term memory task accuracy.

View Article and Find Full Text PDF

A physical reservoir device with tunable transient dynamics is strongly required to process time-series data with various timescales generated in the edge region. In this study, we proposed using the dielectric relaxation at an electrode-ionic liquid (IL) interface as the physical reservoir by making the most of designable physicochemical properties of ILs. The transient dynamics of a Au/IL/Au reservoir device were characterized as a function of the alkyl chain length of cations in the IL (1-alkyl-3-methylimidazolium bis(trifluoromethane sulfonyl)imide).

View Article and Find Full Text PDF

The development of simple catalysts with high performance in the selective oxidation of methane to syngas at low temperature has attracted much attention. Here we report a nickel-based solid catalyst for the oxidation of methane, synthesised by a facile impregnation method. Highly dispersed ultra-small NiO particles of 1.

View Article and Find Full Text PDF

Rh ion-exchanged MFI-type aluminosilicate zeolites with different Al distributions were prepared for controlling the location, state, and size of Rh species. The MFI-type aluminosilicate zeolite with the framework Al atoms predominantly located inside the channel intersections leads to the formation of relatively large Rh species, which were confirmed by ultraviolet-visible (UV-vis) and infrared (IR) spectroscopies. Moreover, this catalyst showed a high catalytic activity for the oxidative reforming reaction of methane.

View Article and Find Full Text PDF

Herein, we construct three-dimensional (3D) FeO epitaxial nanowires at a 10 nm length scale on a 3D MgO nanotemplate using an original nanofabrication technique that mainly comprises nanoimprint lithography and inclined thin-film deposition. Despite the high density of inevitable nanoscale defects, the ultrasmall FeO nanowires exhibit a prominent Verwey transition at about 112 K with a maximum relative change in resistance of 9.5, which is 6 times larger than that of the thin-film configuration.

View Article and Find Full Text PDF

Low-power resistive random access memory (LP-ReRAM) devices have attracted increasing attention owing to their advantages of low operation power. In this study, a vertical-type LP-ReRAM consisting of TiN/Ti/HfO/TiN structure was fabricated. The switching mechanism for LP-ReRAM was elucidated as the conductive filament mechanism for conventional mode, and an interface-type switching mechanism for low power mode was proposed.

View Article and Find Full Text PDF

We report a general approach to overcome the enormous obstacle of the integration of CNTs into devices by bonding single-walled carbon nanotubes (SWNTs) films to arbitrary substrates and transferring them into densified and lithographically processable "CNT wafers". Our approach allows hierarchical layer-by-layer assembly of SWNTs into organized three-dimensional structures, for example, bidirectional islands, crossbar arrays with and without contacts on Si, and flexible substrates. These organized SWNT structures can be integrated with low-power resistive random-access memory.

View Article and Find Full Text PDF