Carbon ion radiotherapy (CIRT) is a heavy ion charge particle therapy with 29 years of prominent use. Despite advantages like high relative biological effectiveness (RBE), improved quality of life, and reduced treatment time, challenges persist, especially regarding heavy nuclear fragments. Our research addresses these challenges in horizontal irradiation, aiming to comprehend Monoenergetic and Spread-Out Bragg peak (SOBP) carbon ion beam trajectories using cell survival analysis and visualizing biological effects through DNA damage (γ-H2AX).
View Article and Find Full Text PDFFLASH radiation therapy with ultrahigh dose rates (UHDR) has the potential to reduce damage to normal tissue while maintaining anti-tumor efficacy. However, rapid and precise dose distribution measurements remain difficult for FLASH radiation therapy with proton beams. To solve this problem, we performed luminescence imaging of water following irradiation by a UHDR proton beam captured using a charge-coupled device camera.
View Article and Find Full Text PDFA new Open-Source dosemeter, SPACEDOS, has been developed for measurements of cosmic radiation on board spacecraft and small satellites. Its main advantages are that it is small and lightweight with low power consumption. It can be adjusted for specific applications, e.
View Article and Find Full Text PDFIt has been observed that healthy tissues are spared at ultra-high dose rate (UHDR: >40 Gy/s), so called FLASH effect. To elucidate the mechanism of FLASH effect, we evaluate changes in radiation chemical yield (G value) of 7-hydroxy-coumarin-3-carboxylic acid (7OH-C3CA), which is formed by the reaction of hydroxyl radicals with coumarin-3-carboxylic acid (C3CA), under carbon ions (140 MeV/u) and protons (27.5 and 55 MeV) in a wide-dose-rate range up to 100 Gy/s.
View Article and Find Full Text PDFBoth iontophoresis (IP) and electroporation (EP) can be utilized to increase the penetration of relatively high molecular pharmaceutical and/or cosmeceutical compounds into the stratum corneum (SC), the uppermost layer of the skin. However, few reports exist on which molecular weights are capable of penetrating the SC, although low molecular compounds of less than 500 Da have been found to readily permeate the skin barrier. In our investigation, we applied fluorescein amine-labeled sodium hyaluronate to porcine aural skin after treatment by IP alone or EP + IP.
View Article and Find Full Text PDFDNA double-strand breaks (DSBs) are the main factor behind carbon-ion radiation therapy (CIRT)-induced cell death. Nuclear interactions along the beam path between the primary carbon ions and targets result in nuclear fragmentation of carbon ions and recoiled particles. These secondary particles travel further distances past the Bragg peak to the tail region, leading to unwanted biological effects that may result in cytotoxicity in critical organs and secondary induced tumors following CIRT.
View Article and Find Full Text PDFRadiation cancer therapy with ultra-high dose rate exposure, so called FLASH radiotherapy, appears to reduce normal tissue damage without compromising tumor response. The aim of this study was to clarify whether FLASH exposure of proton beam would be effective in reducing the DNA strand break induction. We applied a simple model system, pBR322 plasmid DNA in aqueous 1 × TE solution, where DNA single strand breaks (SSBs) and double strand breaks (DSBs) can be precisely quantified by gel electrophoresis.
View Article and Find Full Text PDFLife Sci Space Res (Amst)
November 2021
Energetic ion beam experiments with major space radiation elements, H, He, O, Si and Fe, have been conducted to investigate the radiation shielding properties of composite materials. These materials are expected to be used for parts and fixtures of space vehicles due to both their mechanical strength and their space radiation shielding capabilities. Low Z materials containing hydrogen are effective for shielding protons and heavy ions due to their high stopping power and large fragmentation cross section per unit mass.
View Article and Find Full Text PDFWe report the critical current density () and vortex pinning properties in single crystals of a novel iron-based superconductor (IBS) KCaFeAsF with large in the pristine state, before and after introduction of artificial defects by swift-particle irradiation. The effects of 2.6 GeV U and 3 MeV proton irradiations in KCaFeAsF single crystals on transition temperature and , including its dose dependence, are systematically studied.
View Article and Find Full Text PDFProton therapy is a type of hadron radiotherapy used for treating solid tumors. Unlike heavy charged elements, proton radiation is considered to be low LET (Linear Energy Transfer) radiation, like X-rays. However, the clinical SOBP (Spread Out Bragg Peak) proton radiation is considered to be higher in relative biological effectiveness (RBE) than both X-ray and their own entrance region.
View Article and Find Full Text PDFFLASH radiotherapy appears to kill off tumor cells while sparing healthy tissues, by irradiation at ultra high dose rate (>40 Gy s). The present study aims to clarify the mechanism of the sparing effect by proton irradiation under the FLASH conditions from a viewpoint of radiation chemistry. To do so, we evaluate radiation chemical yields ( values) of 7-hydroxy-coumarin-3-carboxylic acid (7OH-C3CA), which is produced by water radiolysis using coumarin-3-carboxylic acid (C3CA) solution as a radical scavenger of hydroxyl radicals.
View Article and Find Full Text PDFIn this study, we aimed to evaluate the cellular response of healthy human fibroblasts induced by different types of ultra-low-fluence radiations, including gamma rays, neutrons and high linear energy transfer (LET) heavy ions. NB1RGB cells were pretreated with ultra-low-fluence radiations (~0.1 cGy/7-8 h) of Cs gamma rays, Am-Be neutrons, helium, carbon and iron ions before being exposed to an X-ray-challenging dose (1.
View Article and Find Full Text PDFLife Sci Space Res (Amst)
August 2020
Geant4 Monte Carlo simulations were carried out to investigate the possible shielding materials of aluminum, polyethylene, hydrides, complex hydrides and composite materials for radiation protection in spacecraft by considering two physical parameters, stopping power and fragmentation cross section. The dose reduction with shielding materials was investigated for Fe ions with energies of 500 MeV/n, 1 GeV/n and 2 GeV/n which are around the peak of the GCR energy spectrum. Fe ions easily stop in materials such as polyethylene and hydrides as opposed to materials such as aluminum and complex hydrides including high Z metals with contain little or no hydrogen.
View Article and Find Full Text PDFWe studied lethal and mutagenic bystander effects in normal human fibroblasts irradiated with low-energy-carbon ions. After cells reached confluence, cells were irradiated with initial energies of 6 MeV/n carbon ions. The residual energy and LET value were 4.
View Article and Find Full Text PDFThe linear energy transfer (LET) spectrum, absorbed dose and dose equivalent from secondary particles of LETHO ≥15 keV/μm deposited within the plateau of the Bragg curve in primary particle-induced nuclear target fragmentation reactions in tissue during proton and heavy ion radiotherapy were measured using CR-39 plastic nuclear track detectors and analyzed by means of atomic force microscopy. It was found that secondary target fragments contributed 20% to dose equivalent for primary protons (157 MeV), 13% for primary helium ions (145 MeV/n) and 4% for primary carbon ions (383 MeV/n), respectively. Little research has been done on the contribution from these particles to primary given dose.
View Article and Find Full Text PDFSilver ion-activated phosphate glass (Ag-glass) has a good potential for application to radiation dosimetry in various radiation fields due to its multifunctional properties as a detector. The Ag-glass provides three independent signals of radiophotoluminescence, optical absorption, and nuclear track. The combination of these signals allows the dynamic range of the measured dose (10 Gy-10 kGy) and linear energy transfer (<10 keV/m and >1 MeV/m) to be widened.
View Article and Find Full Text PDFA low Cs/Cs ratio anomaly in the north-northwest (NNW) direction from the Fukushima Dai-ichi Nuclear Power Station (FDNPS) is identified by a new analysis of the Cs/Cs ratio dataset which we had obtained in 2011-2015 by a series of car-borne surveys that employed a germanium gamma-ray spectrometer. We found that the Cs/Cs ratio is slightly lower (0.95, decay-corrected to March 11, 2011) in an area with a length of about 15 km and a width of about 3 km in the NNW direction from the FDNPS than in other directions from the station.
View Article and Find Full Text PDFRecently, 211At has received increasing attention as a potential radionuclide for cancer radioimmunotherapy. It is a α-particle emitter, which is extremely effective against malignant cells. We demonstrate a method to verify the efficiency of 211At-labeled trastuzumab antibodies (211At-trastuzumab) against HER2 antigens, which has not been determined for radioimmunotherapy.
View Article and Find Full Text PDFHeavy ions, characterized by high linear energy transfer (LET) radiation, have advantages compared with low LET protons and photons in their biological effects. The application of heavy ions within veterinary clinics requires additional background information to determine heavy ion efficacy. In the present study, comparison of the cell-killing effects of photons, protons and heavy ions was investigated in canine osteosarcoma (OSA) cells .
View Article and Find Full Text PDFThe DNA repair mechanisms involved in hyperthermia-induced radiosensitization with proton and carbon ion radiation exposure were investigated in the present study. In a previous study, Chinese hamster ovary (CHO) cells were exposed to low linear energy transfer (LET) photon radiation. These cells can be sensitized by hyperthermia as a result of inhibition of homologous recombination (HR) repair.
View Article and Find Full Text PDFWhen energetic particles irradiate matter, it becomes activated by nuclear reactions. Radioactivation induced cellular effects are not clearly understood, but it could be a part of bystander effects. This investigation is aimed at understanding the biological effects from radioactivation in solution induced by hadron radiation.
View Article and Find Full Text PDFRadioactive copper (II) (diacetyl-bis N4-methylthiosemicarbazone) (Cu-ATSM) isotopes were originally developed for the imaging of hypoxia in tumors. Because the decay of a (64)Cu atom is emitting not only positrons but also Auger electrons, this radionuclide has great potential as a theranostic agent. However, the success of (64)Cu-ATSM internal radiation therapy would depend on the contribution of Auger electrons to tumor cell killing.
View Article and Find Full Text PDFWe constructed a new car-borne survey system called Radi-Probe with a portable germanium gamma-ray spectrometer onboard a cargo truck, to identify radionuclides and quantify surface contamination from the accident at Fukushima Dai-ichi Nuclear Power Station. The system can quickly survey a large area and obtain ambient dose equivalent rates and gamma-ray energy spectra with good energy resolution. We also developed a new calibration method for the system to deal with an actual nuclear disaster, and quantitative surface deposition densities of radionuclides, such as (134)Cs and (137)Cs, and kerma rates of each radionuclide can be calculated.
View Article and Find Full Text PDFPoly (ether sulfone) (PES) is a candidate for use as a scintillation material in radiation detection. Its characteristics, such as its emission spectrum and its effective refractive index (based on the emission spectrum), directly affect the propagation of light generated to external photodetectors. It is also important to examine the presence of background radiation sources in manufactured PES.
View Article and Find Full Text PDFConsiderable attention has been drawn to the advantages of using aromatic ring polymers for scintillation materials in radiation detection. Thus, it is important to identify and characterise those with the best potential. Here, we characterise poly (ether sulfone) (PES), which is an amber-coloured transparent resin that possesses sulfur as a main component and has a density of 1.
View Article and Find Full Text PDF