In vitro transcription is an essential tool to study the molecular mechanisms of transcription. For over a decade, we have developed an in vitro transcription system from tobacco (Nicotiana tabacum)-cultured cells (BY-2), and this system supported the basic activities of the three RNA polymerases (Pol I, Pol II, and Pol III). However, it was not suitable to study photosynthetic genes, because BY-2 cells have lost their photosynthetic activity.
View Article and Find Full Text PDFIn compound leaves, leaflet primordia are initiated directionally along the lateral sides. Our understanding of the molecular basis of leaflet initiation has improved, but the regulatory mechanisms underlying spatio-temporal patterns remain unclear. In this study, we investigated the mechanisms of acropetal (from the base to the tip) progression of leaflet initiation in Eschscholzia californica.
View Article and Find Full Text PDFWe previously showed that the VASCULAR-RELATED NAC-DOMAIN6 (VND6) and VND7 genes, which encode NAM/ATAF/CUC domain protein transcription factors, act as key regulators of xylem vessel differentiation. Here, we report a glucocorticoid-mediated posttranslational induction system of VND6 and VND7. In this system, VND6 or VND7 is expressed as a fused protein with the activation domain of the herpes virus VP16 protein and hormone-binding domain of the animal glucocorticoid receptor, and the protein's activity is induced by treatment with dexamethasone (DEX), a glucocorticoid derivative.
View Article and Find Full Text PDFTHO2 is a component of the THO-TREX (transcription and export factor) complex that participates in mRNA metabolism and export from the nucleus in yeast and animal cells. Here we report that tobacco putative THO2-related protein (NtTHO2) is a microtubule-associated protein, which directly binds to microtubules in vitro and co-localizes with cortical microtubules in vivo. We purified endogenous NtTHO2 by cycles of microtubule polymerization-depolymerization from crude extracts of tobacco BY-2 miniprotoplasts.
View Article and Find Full Text PDFMyosin XI, a class of myosins expressed in plants is believed to be responsible for cytoplasmic streaming and the translocation of organelles and vesicles. To gain further insight into the translocation of organelles and vesicles by myosin XI, an isoform of Arabidopsis myosin XI, MYA2, was chosen and its role in peroxisome targeting was examined. Using the yeast two-hybrid screening method, two small GTPases, AtRabD1 and AtRabC2a, were identified as factors that interact with the C-terminal tail region of MYA2.
View Article and Find Full Text PDFBackground Information: The results of water permeability measurements suggest the presence of an AQP (aquaporin) in the membrane of the CV (contractile vacuole) in Amoeba proteus [Nishihara, Shimmen and Sonobe (2004) Cell Struct. Funct. 29, 85-90].
View Article and Find Full Text PDFWe purified an 84 kDa polypeptide from the MAP (microtubule-associated protein) fraction of tobacco BY-2 cultured cells. LC/MS/MS (liquid chromatography-tandem mass spectrometry) analysis revealed that this polypeptide is a tobacco homolog of AtDRP3 (Arabidopsis thaliana dynamin-related protein 3). Electron microscopy revealed that NtDRP3 (Nicotiana tabacum dynamin-related protein 3) assembles to form a filamentous structure.
View Article and Find Full Text PDFThe tobacco mitogen-activated protein kinase (MAPK) cascade, which includes MAPK NRK1/NTF6, positively regulates expansion of the cytokinetic machinery known as the phragmoplast, which is followed by the synthesis of cell plates for completion of cell division. However, molecular events lying between the MAPK and phragmoplast expansion were not known. Here, we show that NRK1/NTF6 phosphorylates the threonine residue at position 579 in NtMAP65-1a, a microtubule-associated (MT-associated) protein.
View Article and Find Full Text PDFPlant microtubules are intrinsically more dynamic than those from animals. We know little about the dynamics of the interaction of plant microtubule-associated proteins (MAPs) with microtubules. Here, we have used tobacco and Arabidopsis MAPs with relative molecular mass 65 kDa (NtMAP65-1a and AtMAP65-1), to study their interaction with microtubules in vivo.
View Article and Find Full Text PDFThe genome of Arabidopsis thaliana contains 13 myosin XI isoforms. Here we prepared a specific antibody against a peptide that mimics a unique C-terminal region from the myosin XI isoform, MYA2. The resulting antibody was used to demonstrate that MYA2 in Arabidopsis protein extracts co-sedimented with actin filaments and dissociated from the filaments with ATP treatment.
View Article and Find Full Text PDFA microtubule-associated protein composed of a 200 kDa polypeptide (MAP200) was isolated from tobacco-cultured BY-2 cells. Analysis of the partial amino acid sequence showed that MAP200 was identical to TMBP200, the tobacco MOR1/XMAP215 homolog. Although several homolog proteins in animal and yeast cells have been reported to promote MT dynamics in vitro, no such function has been reported for plant homologs.
View Article and Find Full Text PDFThe microtubule cytoskeleton is a dynamic filamentous structure involved in many key processes in plant cell morphogenesis including nuclear and cell division, deposition of cell wall, cell expansion, organelle movement and secretion. The principal microtubule protein is tubulin, which associates to form the wall of the tubule. In addition, various associated proteins bind microtubules either to anchor, cross-link or regulate the microtubule network within cells.
View Article and Find Full Text PDF