Publications by authors named "Hisako Amino"

Article Synopsis
  • The parasitic nematode Ascaris suum adapts to low oxygen environments by significantly changing its metabolism, but the mechanisms behind this adaptation are not well understood.
  • Researchers have cloned and characterized the genes for hypoxia-inducible factor-1 (HIF-1) subunits (HIF-1α and HIF-1β) in A. suum, finding conserved functional domains in both proteins.
  • The expression of hif-1 mRNAs fluctuates during the nematode's life stages, peaking in the third-stage larvae, suggesting these stages play a crucial role in preparing for life in a host's hypoxic environment.
View Article and Find Full Text PDF

The main flavonoids were isolated from three selected onion cultivars. Three phenolic compounds were obtained by reverse-phase HPLC, and their structures were elucidated by multiple NMR measurements. There were two known compounds, quercetin and quercetin 3'-O-β-D-glucopyranoside (Q3'G), and one novel compound, quercetin 3-O-β-D-glucopyranoside-(4→1)-β-d-glucopyranoside (Q3M), which was identified in onion for the first time.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) production from mitochondrial complex II (succinate-quinone reductase, SQR) has become a focus of research recently since it is implicated in carcinogenesis. To date, the FAD site is proposed as the ROS producing site in complex II, based on studies done on Escherichia coli, whereas the quinone binding site is proposed as the site of ROS production based on studies in Saccharomyces cerevisiae. Using the submitochondrial particles from the adult worms and L(3) larvae of the parasitic nematode Ascaris suum, we found that ROS are produced from more than one site in the mitochondrial complex II.

View Article and Find Full Text PDF

The mitochondrial metabolic pathway of the parasitic nematode Ascaris suum changes dramatically during its life cycle, to adapt to changes in the environmental oxygen concentration. We previously showed that A. suum mitochondria express stage-specific isoforms of complex II (succinate-ubiquinone reductase: SQR/quinol-fumarate reductase: QFR).

View Article and Find Full Text PDF

RNA-mediated interference (RNAi) was employed to systematically inactivate the four subunits of complex II in the mitochondrial electron transport chain. Embryonic lethality was the predominant result of inactivating three subunits (ceSDHB, ceSDHC, and ceSDHD) when using the soaking method to inactivate RNA. The feeding method was employed to deliver dsRNA from the fourth subunit (ceSDHA) to wild-type, mev-1 (mutated in ceSDHC of complex II), and gas-1 animals (mutated in a complex I gene).

View Article and Find Full Text PDF

Caenorhabditis elegans CLK-1 was identified from long-lived mutant worms, and is believed to be involved in ubiquinone biosynthesis. The protein belongs to the eukaryotic CLK-1/Coq7p family, which is also similar to the bacterial Coq7 family, that hydroxylates demethoxyubiquinone, resulting in the formation of hydroxyubiquinone, a precursor of ubiquinone. In Escherichia coli, the corresponding reaction is catalyzed by UbiF, a member of a distinct class of hydroxylase.

View Article and Find Full Text PDF

We recently reported that Ascaris suum mitochondria express stage-specific isoforms of complex II: the flavoprotein subunit and the small subunit of cytochrome b (CybS) of the larval complex II differ from those of adult enzyme, while two complex IIs share a common iron-sulfur cluster subunit (Ip). In the present study, A. suum larval complex II was highly purified to characterize the larval cytochrome b subunits in more detail.

View Article and Find Full Text PDF

Parasites have developed a variety of physiological functions necessary for existence within the specialized environment of the host. Regarding energy metabolism, which is an essential factor for survival, parasites adapt to low oxygen tension in host mammals using metabolic systems that are very different from that of the host. The majority of parasites do not use the oxygen available within the host, but employ systems other than oxidative phosphorylation for ATP synthesis.

View Article and Find Full Text PDF