The aim of computational molecular design is the identification of promising hypothetical molecules with a predefined set of desired properties. We address the issue of accelerating the material discovery with state-of-the-art machine learning techniques. The method involves two different types of prediction; the forward and backward predictions.
View Article and Find Full Text PDFMotivation: The motif discovery problem consists of finding recurring patterns of short strings in a set of nucleotide sequences. This classical problem is receiving renewed attention as most early motif discovery methods lack the ability to handle large data of recent genome-wide ChIP studies. New ChIP-tailored methods focus on reducing computation time and pay little regard to the accuracy of motif detection.
View Article and Find Full Text PDFMotivation: Automated fluorescence microscopes produce massive amounts of images observing cells, often in four dimensions of space and time. This study addresses two tasks of time-lapse imaging analyses; detection and tracking of the many imaged cells, and it is especially intended for 4D live-cell imaging of neuronal nuclei of Caenorhabditis elegans. The cells of interest appear as slightly deformed ellipsoidal forms.
View Article and Find Full Text PDF