Publications by authors named "Hisae Nishioka"

Olanexidine gluconate-containing preoperative antiseptic (OLG-C) is colorless, which makes it difficult to determine its area of application. To overcome this drawback, we realized a stable orange-tinted antiseptic (OLG-T) by adding new additives to OLG-C and investigated its pharmaceutical properties compared with OLG-C and povidone iodine (PVP-I). We evaluated the influence of the additives on the antimicrobial activity and adhesiveness of medical adhesives to OLG-T-applied skin by in vitro time-kill/ex vivo micropig skin assays and a peel test using excised micropig skin, respectively.

View Article and Find Full Text PDF

Recently, 1.5% olanexidine gluconate, a biguanide compounds, was launched as a new antiseptic agent in Japan. However, the comprehensive bactericidal spectrum of olanexidine gluconate is still unknown.

View Article and Find Full Text PDF

Purpose: We assessed the fast-acting bactericidal activity and substantivity of olanexidine gluconate (OLG) to investigate its remaining bactericidal activity on the skin after rinsing and drying by using an ex vivo Yucatan micropig (YMP) skin model.

Methodology: The fast-acting bactericidal activity was evaluated in pigskin models inoculated with methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis, vancomycin-resistant Enterococcus faecalis (VRE), Acinetobacter baumannii, Corynebacterium minutissimum and Cutibacterium acnes. To evaluate substantivity, the YMP skin piece first had 1.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common form of dementia. Cellular AD models derived from human pluripotent stem cells are promising tools in AD research. We recently developed human embryonic stem cell-derived AD models which overexpress mutant Presenilin1 genes, and which exhibit AD phenotypes, including synaptic dysfunction.

View Article and Find Full Text PDF

Cellular disease models are useful tools for Alzheimer's disease (AD) research. Pluripotent stem cells, including human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs), are promising materials for creating cellular models of such diseases. In the present study, we established cellular models of AD in hESCs that overexpressed the mutant Presenilin 1 (PS1) gene with the use of a site-specific gene integration system.

View Article and Find Full Text PDF