Brown adipocytes are characterized by a high abundance of mitochondria, allowing them to consume fatty acids for heat production. Increasing the number of brown adipocytes is considered a promising strategy for combating obesity. However, the molecular mechanisms underlying their differentiation remain poorly understood.
View Article and Find Full Text PDFAdult neural stem cells (NSCs) in the hippocampal dentate gyrus continuously proliferate and generate new neurons throughout life. Although various functions of organelles are closely related to the regulation of adult neurogenesis, the role of endoplasmic reticulum (ER)-related molecules in this process remains largely unexplored. Here we show that Derlin-1, an ER-associated degradation component, spatiotemporally maintains adult hippocampal neurogenesis through a mechanism distinct from its established role as an ER quality controller.
View Article and Find Full Text PDFThere are no available therapies targeting the underlying molecular mechanisms of neurodegenerative diseases. Although chaperone therapies that alleviate endoplasmic reticulum (ER) stress recently showed promise in the treatment of neurodegenerative diseases, the detailed mechanisms remain unclear. We previously reported that mice with central nervous system-specific deletion of Derlin-1, which encodes an essential component for ER quality control, are useful as models of neurodegenerative diseases such as spinocerebellar degeneration.
View Article and Find Full Text PDFDerlin family members (Derlins) are primarily known as components of the endoplasmic reticulum-associated degradation pathway that eliminates misfolded proteins. Here we report a function of Derlins in the brain development. Deletion of or in the central nervous system of mice impaired postnatal brain development, particularly of the cerebellum and striatum, and induced motor control deficits.
View Article and Find Full Text PDFMitochondria play a central role in the function of brown adipocytes (BAs). Although mitochondrial biogenesis, which is indispensable for thermogenesis, is regulated by coordination between nuclear DNA transcription and mitochondrial DNA transcription, the molecular mechanisms of mitochondrial development during BA differentiation are largely unknown. Here, we show the importance of the ER-resident sensor PKR-like ER kinase (PERK) in the mitochondrial thermogenesis of brown adipose tissue.
View Article and Find Full Text PDFVarious types of intracellular and extracellular stresses disturb homeostasis in the endoplasmic reticulum (ER) and, thus, trigger the ER stress response. Unavoidable and/or prolonged ER stress causes cell toxicity and occasionally cell death. The malfunction or death of irreplaceable cells leads to conformational diseases, including diabetes mellitus, ischemic diseases, metabolic diseases, and neurodegenerative diseases.
View Article and Find Full Text PDFThe maintenance of endoplasmic reticulum (ER) homeostasis is essential for cell function. ER stress-induced pre-emptive quality control (ERpQC) helps alleviate the burden to a stressed ER by limiting further protein loading. We have previously reported the mechanisms of ERpQC, which includes a rerouting step and a degradation step.
View Article and Find Full Text PDFCells possess ER quality control systems to adapt to ER stress and maintain their function. ER-stress-induced pre-emptive quality control (ER pQC) selectively degrades ER proteins via translocational attenuation during ER stress. However, the molecular mechanism underlying this process remains unclear.
View Article and Find Full Text PDFMutations in the Cu, Zn superoxide dismutase (SOD1) gene are one of the causative agents of amyotrophic lateral sclerosis (ALS). Although more than 100 different mutations in SOD1 have been identified, it is unclear whether all the mutations are pathogenic or just single nucleotide polymorphisms (SNPs) unrelated to the disease. Our previous systematic analysis found that all pathogenic SOD1 mutants (SOD1(mut)) have a common property, namely, an association with Derlin-1, a component of the endoplasmic reticulum-associated degradation machinery.
View Article and Find Full Text PDFGlyceraldehyde-3-phosphate dehydrogenase (GAPDH) plays roles in both energy maintenance, and stress signaling by forming a protein complex with seven in absentia homolog 1 (Siah1). Mechanisms to coordinate its glycolytic and stress cascades are likely to be very important for survival and homeostatic control of any living organism. Here we report that apoptosis signal-regulating kinase 1 (ASK1), a representative stress kinase, interacts with both GAPDH and Siah1 and is likely able to phosphorylate Siah1 at specific amino acid residues (Thr-70/Thr-74 and Thr-235/Thr-239).
View Article and Find Full Text PDFZinc is an essential trace element, and impaired zinc homeostasis is implicated in the pathogenesis of various human diseases. However, the mechanisms cells use to respond to zinc deficiency are poorly understood. We previously reported that amyotrophic lateral sclerosis (ALS)-linked pathogenic mutants of SOD1 cause chronic endoplasmic reticulum (ER) stress through specific interactions with Derlin-1, which is a component of the ER-associated degradation machinery.
View Article and Find Full Text PDFBackground: Diabetes mellitus is characterized by high blood glucose levels. Pancreatic ß cell death contributes to type 1 and type 2 diabetes. Akita mice, which harbor a human permanent neonatal diabetes-linked mutation (Cys96Tyr) in the insulin gene, are well established as an animal model of diabetes caused by pancreatic ß cell exhaustion.
View Article and Find Full Text PDFObjective: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that is characterized by the selective loss of upper and lower motoneurons. Although >100 different Cu, Zn superoxide dismutase (SOD1) mutations have been identified in ALS patients, it remains controversial whether all of them are disease-causative mutations. Therefore, it is necessary to develop molecular mechanism-based diagnosis and treatment of ALS caused by SOD1 mutations.
View Article and Find Full Text PDFThe endoplasmic reticulum (ER) is an organelle in which newly synthesized secretory and transmembrane proteins are assembled and folded into their correct tertiary structures. However, many of these ER proteins are misfolded as a result of various stimuli and gene mutations. The accumulation of misfolded proteins disrupts the function of the ER and induces ER stress.
View Article and Find Full Text PDFThe extracellular signal-regulated kinase (ERK) pathway is an important signalling pathway that regulates a large number of cellular processes, including proliferation, differentiation and gene expression. Hyperosmotic stress activates the ERK pathway, whereas little is known about the regulatory mechanisms and physiological functions of ERK activation in hyperosmotic response. Here, we show that MAPK/ERK kinase kinase 2 (MEKK2), a member of the MAPKKK family, mediated the specific and transient activation of ERK, which was required for the induction of aquaporin 1 (AQP1) and AQP5 gene expression in response to hyperosmotic stress.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2009
Accumulation of unfolded proteins within the endoplasmic reticulum (ER) lumen induces ER stress. Eukaryotic cells possess the ER quality control systems, the unfolded protein response (UPR), to adapt to ER stress. IRE1alpha is one of the ER stress receptors and mediates the UPR.
View Article and Find Full Text PDFMutation in Cu/Zn-superoxide dismutase (SOD1) is a cause of familial amyotrophic lateral sclerosis (ALS). Mutant SOD1 protein (SOD1(mut)) induces motor neuron death, although the molecular mechanism of SOD1(mut)-induced cell death remains controversial. Here we show that SOD1(mut) specifically interacted with Derlin-1, a component of endoplasmic reticulum (ER)-associated degradation (ERAD) machinery and triggered ER stress through dysfunction of ERAD.
View Article and Find Full Text PDFJ Chem Neuroanat
September 2004
The endoplasmic reticulum (ER) is the organelle in which newly synthesized secretory and transmembrane proteins form their proper tertiary structure by post-translational modification, folding, and oligomerization. However, many of these proteins are unfolded or misfolded by extracellular or intracellular stimuli. The accumulation of misfolded proteins constitutes a risk for living cells.
View Article and Find Full Text PDFThe biological function of full-length amyloid-beta protein precursor (AbetaPP), the precursor of Abeta, is not fully understood. Multiple laboratories have reported that antibody binding to cell surface AbetaPP causes neuronal cell death. Here we examined whether induced dimerization of the cytoplasmic domain of AbetaPP (AbetaPPCD) triggers neuronal cell death.
View Article and Find Full Text PDF