Background: The therapeutic resistance of gliomas is, at least in part, due to stemlike glioma cells (SLGCs), which self-renew, generate the bulk of tumor cells, and sustain tumor growth. SLGCs from glioblastomas (GB) have been studied in cell cultures or mouse models, whereas little is known about SLGCs from lower grade gliomas.
Objective: To compare cell and organotypic slice cultures from GBs and lower grade gliomas and study the maintenance of SLGCs.
Retinoic acid (RA) is required for development and homeostasis of the normal mammalian brain and may play a role in the initiation and progression of malignant brain tumors, such as the glioblastoma multiforme (GBM) and the gliosarcoma (Gsarc). The subpopulation of stem-like glioma cells (SLGCs) was shown to resist standard glioma radio-/chemotherapy and to propagate tumor regrowth. We used phenotypically distinct, self-renewing SLGC lines from six human GBMs, two Gsarcs, and two subcloned SLGC derivatives in order to investigate their responsiveness to all-trans retinoic acid (atRA) and to identify the RA-receptor (RAR) isotypes involved.
View Article and Find Full Text PDF