Publications by authors named "Hiroyuki Sonoda"

Article Synopsis
  • Mucopolysaccharidosis type I (MPS I) is a genetic disorder caused by a lack of the enzyme α-L-iduronidase, leading to harmful buildup of glycosaminoglycans that affect multiple organs and the central nervous system.
  • Current treatments like enzyme replacement therapy only help with physical symptoms due to the blood-brain barrier preventing enzyme access to the brain, while stem cell transplants are limited by risks of complications.
  • A new treatment, lepunafusp alfa (JR-171), combines IDUA with an antibody to enhance enzyme delivery to the brain, showing promising results in a first-in-human study with 18 patients, including successful reduction of harmful substances in both the brain and blood without significant safety concerns
View Article and Find Full Text PDF

Mucopolysaccharidoses (MPSs) make up a group of lysosomal storage diseases characterized by the aberrant accumulation of glycosaminoglycans throughout the body. Patients with MPSs display various signs and symptoms, such as retinopathy, which is also observed in patients with MPS II. Unfortunately, retinal disorders in MPS II are resistant to conventional intravenous enzyme-replacement therapy because the blood-retinal barrier (BRB) impedes drug penetration.

View Article and Find Full Text PDF

Purpose: This study aimed to investigate the recent 10-year trends in cervical laminoplasty and 30-day postoperative complications.

Methods: This retrospective multi-institutional cohort study enrolled patients who underwent laminoplasty for cervical spondylotic myelopathy (CSM) or ossification of the posterior longitudinal ligament. The primary outcome was the occurrence of all-cause 30-day complications.

View Article and Find Full Text PDF

Purpose: Kyphosis involves spines curving excessively backward beyond their physiological curvature. Although the normal structure of the spinal vertebrae is extremely important for maintaining posture and the normal function of the thoracic and abdominal organs, our knowledge concerning the pathogenesis of the disease is insufficient. We herein report that the downregulation of the calcium signaling pathway is involved in the pathogenesis of congenital kyphosis.

View Article and Find Full Text PDF

Mucopolysaccharidosis I (MPS I), a lysosomal storage disease caused by dysfunction of α-L-iduronidase (IDUA), is characterized by the deposition of dermatan sulfate (DS) and heparan sulfate (HS) throughout the body, which causes several somatic and central nervous symptoms. Although enzyme-replacement therapy (ERT) is currently available to treat MPS I, it does not alleviate central nervous disorders, as it cannot penetrate the blood-brain barrier. Here we evaluate the brain delivery, efficacy, and safety of JR-171, a fusion protein comprising humanized anti-human transferrin receptor antibody Fab and IDUA, using monkeys and MPS I mice.

View Article and Find Full Text PDF

Neuronal ceroid lipofuscinosis type 1(CLN1 disease) is a rare autosomal recessive lysosomal storage disease caused by genetic defects of palmitoyl protein thioesterase-1(), leading to accumulation of lipofuscin granules in brain and progressive neurodegeneration. Psychomotor regression, seizures, loss of vision, and movement disorder begin in infancy and result in early death. Currently, no disease-modifying therapy is available.

View Article and Find Full Text PDF

Heparan sulfate (HS) is an essential glycosaminoglycan (GAG) as a component of proteoglycans, which are present on the cell surface and in the extracellular matrix. HS-containing proteoglycans not only function as structural constituents of the basal lamina but also play versatile roles in various physiological processes, including cell signaling and organ development. Thus, inherited mutations of genes associated with the biosynthesis or degradation of HS can cause various diseases, particularly those involving the bones and central nervous system (CNS).

View Article and Find Full Text PDF

Objective: Under clinical development for patients with growth hormone deficiency, JR-142 is a long-acting growth hormone with a half-life extended by fusion with modified serum albumin. We conducted a Phase 1 study to investigate the safety, tolerability, and pharmacokinetic (PK) and pharmacodynamic (PD) profiles of once-weekly subcutaneous administrations of JR-142. The study consisted of two parts: an open-label single ascending dosing study (Part 1), and a randomized, placebo-controlled, assessor-blinded multiple ascending dosing study (Part 2).

View Article and Find Full Text PDF

Enzyme replacement therapy (ERT) has paved the way for treating the somatic symptoms of lysosomal storage diseases (LSDs), but the inability of intravenously administered enzymes to cross the blood-brain barrier (BBB) has left the central nervous system (CNS)-related symptoms of LSDs largely impervious to the therapeutic benefits of ERT, although ERT via intrathecal and intracerebroventricular routes can be used for some neuronopathic LSDs (in particular, mucopolysaccharidoses). However, the considerable practical issues involved make these routes unsuitable for long-term treatment. Efforts have been made to modify enzymes (e.

View Article and Find Full Text PDF

Deposition of heparan sulfate (HS) in the brain of patients with mucopolysaccharidosis II (MPS II) is believed to be the leading cause of neurodegeneration, resulting in several neurological signs and symptoms, including neurocognitive impairment. We recently showed that pabinafusp alfa, a blood-brain-barrier-penetrating fusion protein consisting of iduronate-2-sulfatase and anti-human transferrin receptor antibody, stabilized learning ability by preventing the deposition of HS in the CNS of MPS II mice. We further examined the dose-dependent effect of pabinafusp alfa on neurological function in relation to its HS-reducing efficacy in a mouse model of MPS II.

View Article and Find Full Text PDF

Whereas significant strides have been made in the treatment of lysosomal storage diseases (LSDs), the neuronopathy associated with these diseases remains impervious mainly because of the blood-brain barrier (BBB), which prevents delivery of large molecules to the brain. However, 100 years of research on the BBB since its conceptualization have clarified many of its functional and structural characteristics, spurring recent endeavors to deliver therapeutics across it to treat central nervous system (CNS) disorders, including neuronopathic LSDs. Along with the BBB, the cerebrospinal fluid (CSF) also functions to protect the microenvironment of the CNS, and it is therefore deeply involved in CNS disorders at large.

View Article and Find Full Text PDF

Mucopolysaccharidosis type II (MPS II; Hunter syndrome) is an X-linked recessive lysosomal storage disease caused by a mutation in the gene and characterized by systemic accumulations of glycosaminoglycans. Its somatic symptoms can be relieved by enzyme replacement therapy (ERT) with idursulfase, but because the enzyme cannot cross the blood-brain-barrier (BBB), it does not address the progressive neurodegeneration and subsequent central nervous system (CNS) manifestations seen in patients with neuropathic MPS-II. However, pabinafusp alfa, a human iduronate-2-sulfatase (IDS) fused with a BBB-crossing anti-transferrin receptor antibody, has been shown to be efficacious against both the somatic and CNS symptoms of MPS II.

View Article and Find Full Text PDF

Enzyme replacement therapy (ERT) improves somatic manifestations in mucopolysaccharidoses (MPS). However, because intravenously administered enzymes cannot cross the blood-brain barrier (BBB), ERT is ineffective against the progressive neurodegeneration and resultant severe central nervous system (CNS) symptoms observed in patients with neuronopathic MPS. Attempts to surmount this problem have been made with intrathecal and intracerebroventricular ERT in order to achieve CNS effects, but the burdens on patients are inimical to long-term administrations.

View Article and Find Full Text PDF

In Hunter syndrome (mucopolysaccharidosis II [MPS-II]), systemic accumulation of glycosaminoglycans (GAGs) due to a deficiency of iduronate-2-sulfatase (IDS), caused by mutations in the IDS gene, leads to multiple somatic manifestations and in patients with the severe (neuronopathic) phenotype, also to central nervous system (CNS) involvement. These symptoms cannot be effectively treated with current enzyme-replacement therapies, as they are unable to cross the blood-brain barrier (BBB). Pabinafusp alfa, a novel IDS fused with an anti-human transferrin receptor antibody, was shown to penetrate the BBB and to address neurodegeneration in preclinical studies.

View Article and Find Full Text PDF
Article Synopsis
  • * A new treatment using pabinafusp alfa, a fusion protein that can cross the BBB, has been shown to effectively clear harmful heparan sulfate (HS) from the brain in MPS II mouse models, preventing neurodegeneration and improving cognitive function.
  • * The study found that chronic administration of pabinafusp alfa led to reduced HS levels in the brain and cerebrospinal fluid (
View Article and Find Full Text PDF

Pabinafusp alfa (JR-141) is a novel enzyme drug that crosses the blood-brain barrier by transcytosis via transferrin receptors. In order to establish its efficacy and safety, a multicenter, single-arm, open-label phase 2/3 clinical trial was conducted in 28 Japanese patients with mucopolysaccharidosis II (MPS-II, Hunter syndrome) by intravenous administrations of 2.0 mg/kg of pabinafusp alfa for 52 weeks.

View Article and Find Full Text PDF

Introduction: Spinal mobile tumors are very rare. We herein report a case of paraplegia caused by migration and incarceration of thoracic mobile schwannoma after myelography. .

View Article and Find Full Text PDF

Congenital scoliosis is defined by the presence of structural anatomical malformations that arise from failures of vertebral formation or segmentation before and after birth. The understanding of genetic background and key genes for congenital scoliosis is still poor. We herein report that the excess expression of plasminogen activator inhibitor-1 (Pai-1) induced by the upregulation of miR-224-5p is involved in the pathogenesis of congenital kyphoscoliosis through impaired osteoblast differentiation.

View Article and Find Full Text PDF

Background: Although osteoblastoma is an uncommon benign bone tumor, it sometimes behaves in a locally aggressive fashion. We herein report a case of recurrent lumbar spine osteoblastoma that was treated by repeated surgery and carbon ion radiotherapy.

Case Presentation: A 13-year-old Japanese girl presented with left side lumbar pain.

View Article and Find Full Text PDF

Intradural-extramedullary solitary fibrous tumor/hemangiopericytoma (SFT/HPC) is a rare entity. SFT/HPCs can recur after surgery, even if a benign histology of the tumor is observed. We herein report a 68-year-old woman with intradural-extramedullary SFT/HPC.

View Article and Find Full Text PDF

Background: Spinal sarcoidosis is a rare subgroup of neurosarcoidosis. Although most sarcoid lesions develop in the intramedullary compartment, intradural extramedullary (IDEM) spinal sarcoidosis is an extremely rare entity.

Case Presentation: We herein report a case of IDEM spinal sarcoidosis mimicking a meningioma.

View Article and Find Full Text PDF

Although congenital scoliosis is defined as a genetic disease characterized by a congenital and abnormal curvature of the spinal vertebrae, our knowledge of the genetic underpinnings of the disease is insufficient. We herein show that the downregulation of the retinol-retinoic acid metabolism pathway is involved in the pathogenesis of congenital scoliosis. By analyzing DNA microarray data, we found that the expression levels of genes associated with the retinol metabolism pathway were decreased in the lumbar spine of Ishibashi rats (IS), a rat model of congenital kyphoscoliosis.

View Article and Find Full Text PDF

Hunter syndrome (mucopolysaccharidosis II [MPS II]), a deficiency of iduronate-2-sulfatase (IDS), causes an accumulation of glycosaminoglycans, giving rise to multiple systemic and CNS symptoms. The currently available therapies, idursulfase and idursulfase beta, are ineffective against the CNS symptoms because they cannot pass the blood-brain barrier (BBB). A novel IDS fused with anti-human transferrin receptor antibody (JR-141) has been shown to penetrate the BBB and ameliorate learning deficits in model mice.

View Article and Find Full Text PDF

Mucopolysaccharidosis II (MPS II) is an X-linked recessive lysosomal storage disease caused by mutations in the iduronate-2-sulfatase (IDS) gene. Since IDS catalyzes the degradation of glycosaminoglycans (GAGs), deficiency in this enzyme leads to accumulation of GAGs in most cells in all tissues and organs, resulting in severe somatic and neurological disorders. Although enzyme replacement therapy with human IDS (hIDS) has been used for the treatment of MPS II, this therapy is not effective for defects in the CNS mainly because the enzyme cannot cross the blood-brain barrier (BBB).

View Article and Find Full Text PDF

Escherichia coli is a host widely used in the industrial production of recombinant proteins. However, the expression of heterologous proteins in E. coli often encounters the formation of inclusion bodies, which are insoluble and nonfunctional protein aggregates.

View Article and Find Full Text PDF